Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1087639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819051

RESUMEN

Background: The spectral distribution of light (different wavelength) has recently been identified as an important factor in the dynamics and function of leaf-associated microbes. This study investigated the impact of different wavelength on three commercial biocontrol agents (BCA): Bacillus amyloliquefaciens (BA), Pseudomonas chlororaphis (PC), and Streptomyces griseoviridis (SG). Methods: The impact of light exposure on sole carbon source utilization, biofilm formation, and biosurfactant production by the selected BCA was studied using phenotypic microarray (PM) including 190 sole carbon sources (OmniLog®, PM panels 1 and 2). The BCA were exposed to five monochromatic light conditions (420, 460, 530, 630, and 660 nm) and darkness during incubation, at an intensity of 50 µmol m-2 s-1. Results: Light exposure together with specific carbon source increased respiration in all three BCA. Different wavelengths of light influenced sole carbon utilization for the different BCA, with BA and PC showing increased respiration when exposed to wavelengths within the blue spectrum (420 and 460 nm) while respiration of selected carbon sources by SG increased in the presence of red light (630 and 660 nm). Only one carbon source (capric acid) generated biosurfactant production in all three BCA. A combination of specific wavelength of light and sole carbon source increased biofilm formation in all three BCA. BA showed significantly higher biofilm formation when exposed to blue (460 nm) and green (530 nm) light and propagated in D-sucrose, D-fructose, and dulcitol. PC showed higher biofilm formation when exposed to blue light. Biofilm formation by SG increased when exposed to red light (630 nm) and propagated in citraconic acid. Conclusion: To increase attachment and success in BCA introduced into the phyllosphere, a suitable combination of light quality and nutrient conditions could be used.

2.
Environ Pollut ; 319: 120958, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603758

RESUMEN

Recovery and reuse of nutrients is a major challenge in agriculture. A new process contributing to a circular economy is the anaerobic digestion of food waste, which is a sustainable way of recycling nutrients as the digestate can be used as fertiliser in agriculture and horticulture. However, the digestate may be polluted with contaminants of emerging concern (CECs) that can be circulated back into the food chain, posing a risk to the environment and human health. In this work, the nutrient solution was spiked with 18 selected CECs frequently detected in food waste biogas facilities, and subsequent uptake and fate of these CECs were evaluated in pak choi grown in two different nutrient solutions (mineral and organic). All spiked compounds except two (propylparaben, fenbendazole) were taken up by pak choi plants, with perfluorobutanoic acid (PFBA) and sertraline displaying the highest concentrations (270 and 190 µg/kg fresh weight, respectively). There were no statistically significant differences in uptake between mineral and organic nutrient solutions. Uptake of per- and polyfluoroalkyl substances (PFAS) was negatively correlated with perfluorocarbon chain length and dependent on the functional group (r = -0.73). Sixteen transformation products (TPs) were tentatively identified using suspect screening, most of which were Phase II or even Phase III metabolites. Six of these TPs were identified for the first time in plant metabolism and their metabolic pathways were considered.


Asunto(s)
Brassica rapa , Eliminación de Residuos , Humanos , Brassica rapa/metabolismo , Alimentos , Transporte Biológico , Agricultura
3.
J Environ Manage ; 313: 114997, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395528

RESUMEN

Anaerobic digestate based on food waste is increasingly used as fertilizer in food production. This study examined the characteristics of anaerobic digestate based on food waste from three biogas plants in Sweden. The characterization included measurements of heavy metals (n = 7), chemicals of emerging concern (CECs), such as currently used drugs and pesticides (n = 133), and an extended range of food-borne pathogens, including two notable sporeformers and some widespread antibiotic-resistant bacteria. The amounts of Escherichia coli, enterococci, and Salmonella and the concentrations of the target heavy metals were all below the maximum accepted levels at all three locations studied. However, the spore-forming Bacillus cereus was found to be present at high levels in samples from all three biogas plants. Among the 133 CECs investigated, 48 were detected at least once, and the highest concentrations were found for pyroxidine, nicotine, caffeine, theobromine, and nicotine. The biofertilizers from the different biogas plants had similar CEC profiles, which indicate similarities in household waste composition and thorough mixing in the biogas plants. If this profile is found to be spatially and temporally consistent, it can help regulators to establish priority lists of CECs of top concern. Assuming increasing use of biofertilizers for food production in the future, it would be beneficial to have concentration limits for CECs Risk estimation based on risk quotients (RQs) indicated generally low environmental risks associated with application of biofertilizer to soils for food crop production. However, the toxicity of CEC mixtures needs to be considered when estimating the risks from application of biofertilizers on agricultural land or in other production systems.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Anaerobiosis , Biocombustibles , Alimentos , Nicotina , Aguas del Alcantarillado/química
4.
Front Plant Sci ; 13: 770179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401605

RESUMEN

Digestate from biogas production high in plant-available macro- and micro-nutrients could replace mineral fertilizer in protected (soilless) horticulture. Previous uses of digestate have shown that low concentrations of plant-available phosphorus (P) and sulfur (S) may be limiting factors for growth when using digestate as the sole fertilizer. In this study, digestate collected from a municipal biogas plant in Sweden was nitrified in a moving-bed biofilm reactor prior to its use as fertilizer. A greenhouse pot trial with pak choi grown in peat-based growing medium was established to assess the (i) macro- and micro-nutrient availability in the digestate, with particular focus on P and S and (ii) the effect of amending the digestate solution with nutrients considered to be lacking [P, S, magnesium (Mg), manganese (Mn), boron (B), and molybdenum (Mo)]. The results showed that plants fertilized with raw digestate suffered from S and B deficiency and early P deficiency. Supplementing the digestate with nutrients originating from mineral salts resulted in sufficient plant tissue concentrations of all elements except S. The marketable yield was similar to that achieved using standard mineral fertilizer and the dry matter yield was 17% higher. In the light of the present results, the use of nitrified digestate in soilless plant production seems like a fruitful way forward to recycle organic nutrients from waste streams. In the case where a strict organic protocol is not needed, amendment with inorganic nutrients may be a way to increase the utilization of organically derived nutrients.

5.
Chemosphere ; 291(Pt 2): 132898, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34780735

RESUMEN

Organic micropollutants (MPs) pose potential threats to environmental ecosystems and human health. This study investigated uptake of perfluoroalkyl substances (PFASs), pharmaceuticals, and paraben by edible oyster mushrooms (Pleurotus ostreatus), cultivated on spiked growth substrate. Concentrations of pharmaceuticals and paraben in substrate showed a decreasing trend over a 20-day harvesting period, whereas PFAS concentrations were variable over the harvesting period. However, only propylparaben, clarithromycin, and PFASs were detected in fruiting bodies of oyster mushroom. Uptake of PFASs by oyster mushroom fruit bodies was negatively correlated with perfluorocarbon chain length. An impact of MPs on fungal colonization was observed, with decreased respiration in treatments with the highest concentration of MPs, but production of fruiting bodies was not affected by exposure level. The potential human risk from ingestion of MPs was evaluated for oyster mushrooms exposed to the highest concentration of MPs in substrate, based on acceptable daily intake (ADI).


Asunto(s)
Fluorocarburos , Preparaciones Farmacéuticas , Pleurotus , Ecosistema , Humanos , Parabenos
6.
PLoS One ; 12(12): e0189862, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29267321

RESUMEN

Despite the overruling impact of light in the phyllosphere, little is known regarding the influence of light spectra on non-phototrophic bacteria colonizing the leaf surface. We developed an in vitro method to study phenotypic profile responses of bacterial pure cultures to different bands of the visible light spectrum using monochromatic (blue: 460 nm; red: 660 nm) and polychromatic (white: 350-990 nm) LEDs, by modification and optimization of a protocol for the Phenotype MicroArray™ technique (Biolog Inc., CA, USA). The new protocol revealed high reproducibility of substrate utilization under all conditions tested. Challenging the non-phototrophic bacterium Pseudomonas sp. DR 5-09 with white, blue, and red light demonstrated that all light treatments affected the respiratory profile differently, with blue LED having the most decisive impact on substrate utilization by impairing respiration of 140 substrates. The respiratory activity was decreased on 23 and 42 substrates under red and white LEDs, respectively, while utilization of one, 16, and 20 substrates increased in the presence of red, blue, and white LEDs, respectively. Interestingly, on four substrates contrasting utilization patterns were found when the bacterium was exposed to different light spectra. Although non-phototrophic bacteria do not rely directly on light as an energy source, Pseudomonas sp. DR 5-09 changed its respiratory activity on various substrates differently when exposed to different lights. Thus, ability to sense and distinguish between different wavelengths even within the visible light spectrum must exist, and leads to differential regulation of substrate usage. With these results, we hypothesize that different light spectra might be a hitherto neglected key stimulus for changes in microbial lifestyle and habits of substrate usage by non-phototrophic phyllospheric microbiota, and thus might essentially stratify leaf microbiota composition and diversity.


Asunto(s)
Luz , Pseudomonas/efectos de la radiación , Biomasa , Hojas de la Planta/microbiología , Pseudomonas/metabolismo
7.
Curr Microbiol ; 69(5): 699-702, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24985199

RESUMEN

Formation of biofilm on surfaces is a common feature in aquatic environments. Major groups of inhabitants in conditions where light is present are photoautotrophic microorganisms, such as cyanobacteria and microalgae. This study examined the effect of light quality on growth and biofilm formation of the microalgal species Chlorella vulgaris. Dense biofilm formation and aggregated growth of cells were observed in treatments exposed to blue, purple and white light. Less dense biofilm formation and solitary growth of cells were observed in treatments exposed to red, yellow or green light. Microalgal biofilms are of high importance in many respects, not least from an economic perspective. One example is the intense efforts undertaken to control biofilm formation on technical surfaces such as ship hulls. The present study suggests that light quality plays a role in biofilm formation and that blue-light receptors may be involved.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Chlorella vulgaris/fisiología , Chlorella vulgaris/efectos de la radiación , Luz , Chlorella vulgaris/crecimiento & desarrollo
8.
Bioresour Technol ; 159: 465-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24718357

RESUMEN

In this study, the green microalga Chlorella vulgaris was exposed to monochromatic light at six different wavelengths in order to study the effect on biomass productivity and fatty acid content. A significantly higher amount of biomass by produced in the treatments with yellow, red and white light compared with blue, green and purple light. There were also significant differences in total lipid content and fatty acid profile between the treatments. The green light regime gave the lowest concentration of lipids, but increased the concentration of polyunsaturated fatty acids. Thus it can be concluded that light quality significantly affects biomass productivity, total lipid concentration and fatty acid profile in the microalga C. vulgaris.


Asunto(s)
Biomasa , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/efectos de la radiación , Ácidos Grasos/metabolismo , Luz , Microalgas/crecimiento & desarrollo , Microalgas/efectos de la radiación , Chlorella vulgaris/metabolismo , Microalgas/metabolismo
9.
Antonie Van Leeuwenhoek ; 94(2): 329-34, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18478353

RESUMEN

The use of biosurfactants is a promising alternative in biological control of zoospore-producing plant pathogens. In the present study, biosurfactant production by the indigenous population of fluorescent pseudomonads in a soilless plant cultivation system was studied during the growing season. A total of 600 strains was screened and of these 18.5% were observed to produce biosurfactants. Production of both antibiotics and biosurfactant was uncommon among the isolated strains. A selective effect of the cultivation system filter was observed on the biosurfactant-producing strains and these strains were only occasionally observed after the filter, despite having a significantly higher motility than the nonbiosurfactant-producing strains. The majority of biosurfactant-producing strains were isolated from the filter skin, which suggests that this is a suitable surface for inoculation with biocontrol strains.


Asunto(s)
Antibacterianos/metabolismo , Hidroponía , Pseudomonas fluorescens/metabolismo , Solanum lycopersicum/microbiología , Tensoactivos/metabolismo , Raíces de Plantas/microbiología , Pseudomonas fluorescens/química , Pseudomonas fluorescens/crecimiento & desarrollo
10.
Antonie Van Leeuwenhoek ; 93(4): 373-80, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18058254

RESUMEN

The presence of antibiotic- and biosurfactant-producing strains of fluorescent pseudomonads in a closed hydroponic system equipped with a slow filter was investigated. A total of 271 strains of pseudomonads were isolated before the filter, from the filter skin and from the effluent. Production of biosurfactants was determined using the drop-collapse method. The ability of the strains to inhibit the growth of the plant pathogens Pythium ultimum, Phytophthora cryptogea and Fusarium oxysporum was determined using dual culture plating. The influence of carbon sources on production was determined for selected strains, which also were identified to species level. Production of antibiotics or biosurfactants was observed to be a common trait among the fluorescent pseudomonads within the closed hydroponic system and it was affected by the filter. Pythium ultimum was the pathogen that was most sensitive to antibiotics produced by the fluorescent pseudomonads. The results indicated a strong influence of nutritional resources on antibiotic and biosurfactant production.


Asunto(s)
Antibacterianos/metabolismo , Hidroponía/métodos , Filtros Microporos/microbiología , Pseudomonas fluorescens/metabolismo , Tensoactivos/metabolismo , Antibacterianos/farmacología , Carbono/metabolismo , Phytophthora/efectos de los fármacos , Phytophthora/crecimiento & desarrollo , Pseudomonas fluorescens/aislamiento & purificación , Pythium/efectos de los fármacos , Pythium/crecimiento & desarrollo , Tensoactivos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...