Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 119(1): 42-55, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042450

RESUMEN

Radiation therapy (RT) has been a primary treatment modality in cancer for decades. Increasing evidence suggests that RT can induce an immunosuppressive shift via upregulation of cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). MDSCs inhibit antitumor immunity through potent immunosuppressive mechanisms and have the potential to be crucial tools for cancer prognosis and treatment. MDSCs interact with many different pathways, desensitizing tumor tissue and interacting with tumor cells to promote therapeutic resistance. Vascular damage induced by RT triggers an inflammatory signaling cascade and potentiates hypoxia in the tumor microenvironment (TME). RT can also drastically modify cytokine and chemokine signaling in the TME to promote the accumulation of MDSCs. RT activation of the cGAS-STING cytosolic DNA sensing pathway recruits MDSCs through a CCR2-mediated mechanism, inhibiting the production of type 1 interferons and hampering antitumor activity and immune surveillance in the TME. The upregulation of hypoxia-inducible factor-1 and vascular endothelial growth factor mobilizes MDSCs to the TME. After recruitment, MDSCs promote immunosuppression by releasing reactive oxygen species and upregulating nitric oxide production through inducible nitric oxide synthase expression to inhibit cytotoxic activity. Overexpression of arginase-1 on subsets of MDSCs degrades L-arginine and downregulates CD3ζ, inhibiting T-cell receptor reactivity. This review explains how radiation promotes tumor resistance through activation of immunosuppressive MDSCs in the TME and discusses current research targeting MDSCs, which could serve as a promising clinical treatment strategy in the future.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias/patología , Microambiente Tumoral , Inmunosupresores , Hipoxia/metabolismo
2.
Brain ; 145(3): 925-938, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35355055

RESUMEN

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Encéfalo/patología , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Curr Biol ; 28(4): 623-629.e3, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29429615

RESUMEN

Nervous systems display intriguing patterns of sexual dimorphisms across the animal kingdom, but the mechanisms that generate such dimorphisms remain poorly characterized. In the nematode Caenorhabditis elegans, a number of neurons present in both sexes are synaptically connected to one another in a sexually dimorphic manner as a result of sex-specific synaptic pruning and maintenance [1-3]. We define here a mechanism for the male-specific maintenance of the synaptic connections of the phasmid sensory neuron PHB and its male-specific target, the sex-shared AVG interneuron. We show that the C. elegans Netrin ortholog UNC-6, signaling through its cognate receptor UNC-40/DCC and the CED-5/DOCK180 guanine nucleotide exchange factor, is both required and sufficient for male-specific synaptic maintenance. The dimorphism of unc-6 activity is brought about by sex-specific regulation of unc-6 transcription. Although unc-6 is transcribed in the AVG neuron of males and hermaphrodites during juvenile stages, unc-6 expression is downregulated in AVG in hermaphrodites during sexual maturation but is maintained during sexual maturation of males. unc-6 downregulation in hermaphrodites is conferred by the master regulator of hermaphrodite sexual identity, the Gli/CI homolog TRA-1, which antagonizes the non-sex-specific function of the LIM homeobox gene lin-11, a terminal selector and activator of unc-6 in AVG. Preventing the downregulation of unc-6 in AVG of hermaphrodites through ectopic expression of unc-6 in transgenic animals results in the maintenance of the PHB>AVG synapses in hermaphrodites. Taken together, intersectional transcriptional regulation of unc-6/Netrin is required and sufficient to cell autonomously pattern sexually dimorphic synapses.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Netrinas/genética , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Organismos Hermafroditas/genética , Organismos Hermafroditas/crecimiento & desarrollo , Organismos Hermafroditas/fisiología , Masculino , Netrinas/metabolismo , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...