Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768765

RESUMEN

The exact etiology of Parkinson's disease (PD) remains largely unknown, but more and more research suggests the involvement of the gut microbiota. Interestingly, idiopathic PD patients were shown to have at least a 10 times higher prevalence of Helicobacter suis (H. suis) DNA in gastric biopsies compared to control patients. H. suis is a zoonotic Helicobacter species that naturally colonizes the stomach of pigs and non-human primates but can be transmitted to humans. Here, we investigated the influence of a gastric H. suis infection on PD disease progression through a 6-hydroxydopamine (6-OHDA) mouse model. Therefore, mice with either a short- or long-term H. suis infection were stereotactically injected with 6-OHDA in the left striatum and sampled one week later. Remarkably, a reduced loss of dopaminergic neurons was seen in the H. suis/6-OHDA groups compared to the control/6-OHDA groups. Correspondingly, motor function of the H. suis-infected 6-OHDA mice was superior to that in the non-infected 6-OHDA mice. Interestingly, we also observed higher expression levels of antioxidant genes in brain tissue from H. suis-infected 6-OHDA mice, as a potential explanation for the reduced 6-OHDA-induced cell loss. Our data support an unexpected neuroprotective effect of gastric H. suis on PD pathology, mediated through changes in oxidative stress.


Asunto(s)
Infecciones por Helicobacter , Helicobacter heilmannii/fisiología , Enfermedad de Parkinson/microbiología , Estómago/microbiología , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/microbiología , Femenino , Gliosis/inducido químicamente , Gliosis/microbiología , Helicobacter heilmannii/crecimiento & desarrollo , Inflamación/microbiología , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores , Estrés Oxidativo/fisiología , Oxidopamina/toxicidad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Peroxidasas/genética , Peroxidasas/metabolismo , Gastropatías/fisiopatología
2.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34576300

RESUMEN

Antimicrobial resistant (AMR) bacteria constitute a global health concern. Helicobacter pylori is a Gram-negative bacterium that infects about half of the human population and is a major cause of peptic ulcer disease and gastric cancer. Increasing resistance to triple and quadruple H. pylori eradication therapies poses great challenges and urges the development of novel, ideally narrow spectrum, antimicrobials targeting H. pylori. Here, we describe the antimicrobial spectrum of a family of nitrobenzoxadiazol-based antimicrobials initially discovered as inhibitors of flavodoxin: an essential H. pylori protein. Two groups of inhibitors are described. One group is formed by narrow-spectrum compounds, highly specific for H. pylori, but ineffective against enterohepatic Helicobacter species and other Gram-negative or Gram-positive bacteria. The second group includes extended-spectrum antimicrobials additionally targeting Gram-positive bacteria, the Gram-negative Campylobacter jejuni, and most Helicobacter species, but not affecting other Gram-negative pathogens. To identify the binding site of the inhibitors in the flavodoxin structure, several H. pylori-flavodoxin variants have been engineered and tested using isothermal titration calorimetry. An initial study of the inhibitors capacity to generate resistances and of their synergism with antimicrobials commonly used in H. pylori eradication therapies is described. The narrow-spectrum inhibitors, which are expected to affect the microbiota less dramatically than current antimicrobial drugs, offer an opportunity to develop new and specific H. pylori eradication combinations to deal with AMR in H. pylori. On the other hand, the extended-spectrum inhibitors constitute a new family of promising antimicrobials, with a potential use against AMR Gram-positive bacterial pathogens.


Asunto(s)
Antiinfecciosos/farmacología , Flavodoxina/antagonistas & inhibidores , Helicobacter/efectos de los fármacos , Antiinfecciosos/síntesis química , Sitios de Unión , Sinergismo Farmacológico , Flavodoxina/química , Flavodoxina/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica
3.
Pathogens ; 10(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803832

RESUMEN

Gastric helicobacters (Helicobacter (H.) pylori and non-H. pylori Helicobacter species (NHPHs)) colonize the stomach of humans and/or animals. Helicobacter species identification is essential since many of them are recognized as human and/or animal pathogens. Currently, Helicobacter species can only be differentiated using molecular methods. Differentiation between NHPHs using MALDI-TOF MS has not been described before, probably because these species are poorly represented in current MALDI-TOF MS databases. Therefore, we identified 93 gastric Helicobacter isolates of 10 different Helicobacter species using MALDI-TOF MS in order to establish a more elaborate Helicobacter reference database. While the MALDI Biotyper database was not able to correctly identify any of the isolates, the in-house database correctly identified all individual mass spectra and resulted in 82% correct species identification based on the two highest log score matches (with log scores ≥2). In addition, a dendrogram was constructed using all newly created main spectrum profiles. Nine main clusters were formed, with some phylogenetically closely related Helicobacter species clustering closely together and well-defined subclusters being observed in specific species. Current results suggest that MALDI-TOF MS allows rapid differentiation between gastric Helicobacter species, provided that an extensive database is at hand and variation due to growth conditions and agar-medium-related peaks are taken into account.

4.
Microorganisms ; 8(6)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630563

RESUMEN

A combined agar and broth dilution method followed by qPCR was used to determine the antimicrobial susceptibility of feline H. heilmannii and H. ailurogastricus isolates. All H. ailurogastricus isolates showed a monomodal distribution of MICs for all the antimicrobial agents tested. For H. heilmannii, a bimodal distribution was observed for azithromycin, enrofloxacin, spectinomycin, and lincomycin. Single nucleotide polymorphisms (SNPs) were found in 50S ribosomal proteins L2 and L3 of the H. heilmannii isolate not belonging to the WT population for azithromycin, and in 30S ribosomal proteins S1, S7, and S12 of the isolate not belonging to the WT population for spectinomycin. The antimicrobial resistance mechanism to enrofloxacin and lincomycin remains unknown (2 and 1 H. heilmannii isolate(s), resp.). Furthermore, H. heilmannii isolates showed higher MICs for neomycin compared to H. ailurogastricus isolates which may be related to the presence of SNPs in several 30S and 50S ribosomal protein encoding genes and ribosomal RNA methyltransferase genes. This study shows that acquired resistance to azithromycin, spectinomycin, enrofloxacin, and lincomycin occasionally occurs in feline H. heilmannii isolates. As pets may constitute a source of infection for humans, this should be kept in mind when dealing with a human patient infected with H. heilmannii.

5.
Vet Res ; 51(1): 62, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381076

RESUMEN

The porcine Helicobacter suis and canine-feline H. heilmannii are gastric Helicobacter species with zoonotic potential. However, little is known about the pathogenesis of human infections with these Helicobacter species. To gain more insight into the interactions of both zoonotic Helicobacter species with human gastric epithelial cells, we investigated bacterial genes that are differentially expressed in a H. suis and H. heilmannii strain after adhesion to the human gastric epithelial cell line MKN7. In vitro Helicobacter-MKN7 binding assays were performed to obtain bacterial RNA for sequencing analysis. H. suis and H. heilmannii bacteria attached to the gastric epithelial cells (i.e. cases) as well as unbound bacteria (i.e. controls) were isolated, after which prokaryotic RNA was purified and sequenced. Differentially expressed genes were identified using the DESeq2 package and SARTools pipeline in R. A list of 134 (83 up-regulated and 51 down-regulated) and 143 (60 up-regulated and 83 down-regulated) differentially expressed genes (padj ≤ 0.01; fold change ≥ 2) were identified for the adherent H. suis and H. heilmannii strains, respectively. According to BLASTp analyses, only 2 genes were commonly up-regulated and 4 genes commonly down-regulated in both pathogens. Differentially expressed genes of the H. suis and H. heilmannii strains belonged to multiple functional classes, indicating that adhesion of both strains to human gastric epithelial cells evokes pleiotropic adaptive responses. Our results suggest that distinct pathways are involved in human gastric colonization of H. suis and H. heilmannii. Further research is needed to elucidate the clinical significance of these findings.


Asunto(s)
Adhesión Bacteriana , Regulación Bacteriana de la Expresión Génica , Helicobacter heilmannii/fisiología , Transcriptoma , Línea Celular , Células Epiteliales , Expresión Génica , Helicobacter heilmannii/clasificación , Helicobacter heilmannii/genética , Humanos , Estómago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...