Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(7): e202202939, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374157

RESUMEN

Fluorine atoms play an important role in all branches of chemistry and accordingly, it is very important to study their unique and varied effects systematically, in particular, the structure-physicochemical properties relationship. The present study describes exceptional physicochemical effects resulting from a H/F exchange at the methylene bridge of gem-difunctional compounds. The Δlog P(CF2-CH2) values, that is, the change in lipophilicity, observed for the CH2 /CF2 replacement in various α,α-phenoxy- and thiophenoxy-esters/amides, diketones, benzodioxoles and more, fall in the range of 0.6-1.4 units, which for most cases, is far above the values expected for such a replacement. Moreover, for compounds holding more than one such gem-difunctional moiety, the effect is nearly additive, so one can switch from a hydrophilic compound to a lipophilic one in a limited number of H/F exchanges. DFT studies of some of these systems revealed that polarity, conformational preference as well as charge distributions are strongly affected by such hydrogen to fluorine atom substitution. The pronounced effects described, are a result of the interplay between changes in polarity, H-bond basicity and molecular volume, which were obtained with a very low 'cost' in terms of molecular weight or steric effects and may have a great potential for implementation in various fields of chemical sciences.

2.
J Med Chem ; 64(8): 4516-4531, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33844540

RESUMEN

Modulation of the H-bond basicity (pKHB) of various functional groups (FGs) by attaching fluorine functions and its impact on lipophilicity and bioisosterism considerations are described. In general, H/F replacement at the α-position to H-bond acceptors leads to a decrease of the pKHB value, resulting, in many cases, in a dramatic increase in the compounds' lipophilicity (log Po/w). In the case of α-CF2H, we found that these properties may also be affected by intramolecular H-bonds between CF2H and the FG. A computational study of ketone and sulfone series revealed that α-fluorination can significantly affect overall polarity, charge distribution, and conformational preference. The unique case of α-di- and trifluoromethyl ketones, which exist in octanol/water phases as ketone, hemiketal, and gem-diol forms, in equilibrium, prevents direct log Po/w determination by conventional methods, and therefore, the specific log Po/w values of these species were determined directly, for the first time, using Linclau's 19F NMR-based method.


Asunto(s)
Flúor/química , Cetonas/química , Teoría Funcional de la Densidad , Halogenación , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Cetonas/síntesis química , Cinética , Espectroscopía de Resonancia Magnética , Piridinas/síntesis química , Piridinas/química , Sulfonas/síntesis química , Sulfonas/química
3.
J Med Chem ; 62(11): 5628-5637, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31091098

RESUMEN

The effects of the CF2H moiety on H-bond (HB) acidity and lipophilicity of various compounds, when attached directly to an aromatic ring or to other functions like alkyls, ethers/thioethers, or electron-withdrawing groups, are discussed. It was found that the CF2H group acts as a HB donor with a strong dependence on the attached functional group ( A = 0.035-0.165). Regarding lipophilicity, the CF2H group may act as a more lipophilic bioisostere of OH but as a similar or less lipophilic bioisostere of SH and CH3, respectively, when attached to Ar or alkyl. In addition, the lipophilicity of ethers, sulfoxides, and sulfones is dramatically increased upon CH3/CF2H exchange at the α position. Interestingly, this exchange significantly affects not only the polarity and the volume of the solutes but also their HB-accepting ability, the main factors influencing log Poct. Accordingly, this study may be helpful in the rational design of drugs containing this moiety.


Asunto(s)
Fluorocarburos/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular
4.
J Med Chem ; 60(2): 797-804, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28051859

RESUMEN

There is a growing interest in organic compounds containing the difluoromethyl group, as it is considered a lipophilic hydrogen bond donor that may act as a bioisostere of hydroxyl, thiol, or amine groups. A series of difluoromethyl anisoles and thioanisoles was prepared and their druglike properties, hydrogen bonding, and lipophilicity were studied. The hydrogen bond acidity parameters A (0.085-0.126) were determined using Abraham's solute 1H NMR analysis. It was found that the difluoromethyl group acts as a hydrogen bond donor on a scale similar to that of thiophenol, aniline, and amine groups but not as that of hydroxyl. Although difluoromethyl is considered a lipophilicity enhancing group, the range of the experimental Δlog P(water-octanol) values (log P(XCF2H) - log P(XCH3)) spanned from -0.1 to +0.4. For both parameters, a linear correlation was found between the measured values and Hammett σ constants. These results may aid in the rational design of drugs containing the difluoromethyl moiety.


Asunto(s)
Hidrocarburos Fluorados/química , Anisoles/síntesis química , Anisoles/química , Hidrocarburos Fluorados/síntesis química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos de Lewis/síntesis química , Ácidos de Lewis/química , Espectroscopía de Protones por Resonancia Magnética , Sulfuros/síntesis química , Sulfuros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...