Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Intensive Care ; 10(1): 35, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32211957

RESUMEN

BACKGROUND: Ventilation/perfusion inequalities impair gas exchange in acute respiratory distress syndrome (ARDS). Although increased dead-space ventilation (VD/VT) has been described in ARDS, its mechanism is not clearly understood. We sought to evaluate the relationships between dynamic variations in VD/VT and extra-pulmonary microcirculatory blood flow detected at sublingual mucosa hypothesizing that an altered microcirculation, which is a generalized phenomenon during severe inflammatory conditions, could influence ventilation/perfusion mismatching manifested by increases in VD/VT fraction during early stages of ARDS. METHODS: Forty-two consecutive patients with early moderate and severe ARDS were included. PEEP was set targeting the best respiratory-system compliance after a PEEP-decremental recruitment maneuver. After 60 min of stabilization, hemodynamics and respiratory mechanics were recorded and blood gases collected. VD/VT was calculated from the CO2 production ([Formula: see text]) and CO2 exhaled fraction ([Formula: see text]) measurements by volumetric capnography. Sublingual microcirculatory images were simultaneously acquired using a sidestream dark-field device for an ulterior blinded semi-quantitative analysis. All measurements were repeated 24 h after. RESULTS: Percentage of small vessels perfused (PPV) and microcirculatory flow index (MFI) were inverse and significantly related to VD/VT at baseline (Spearman's rho = - 0.76 and - 0.63, p < 0.001; R2 = 0.63, and 0.48, p < 0.001, respectively) and 24 h after (Spearman's rho = - 0.71, and - 0.65; p < 0.001; R2 = 0.66 and 0.60, p < 0.001, respectively). Other respiratory, macro-hemodynamic and oxygenation parameters did not correlate with VD/VT. Variations in PPV between baseline and 24 h were inverse and significantly related to simultaneous changes in VD/VT (Spearman's rho = - 0.66, p < 0.001; R2 = 0.67, p < 0.001). CONCLUSION: Increased heterogeneity of microcirculatory blood flow evaluated at sublingual mucosa seems to be related to increases in VD/VT, while respiratory mechanics and oxygenation parameters do not. Whether there is a cause-effect relationship between microcirculatory dysfunction and dead-space ventilation in ARDS should be addressed in future research.

2.
J Appl Physiol (1985) ; 122(6): 1406-1417, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28336538

RESUMEN

Derangements of microvascular blood flow distribution might contribute to disturbing O2 extraction by peripheral tissues. We evaluated the dynamic relationships between the mesenteric O2 extraction ratio ([Formula: see text]) and the heterogeneity of microvascular blood flow at the gut and sublingual mucosa during the development and resuscitation of septic shock in a swine model of fecal peritonitis. Jejunal-villi and sublingual microcirculation were evaluated using a portable intravital-microscopy technique. Simultaneously, we obtained arterial, mixed-venous, and mesenteric blood gases, and jejunal-tonometric measurements. During resuscitation, pigs were randomly allocated to a fixed dose of dobutamine (5 µg·kg-1·min-1) or placebo while three sham models with identical monitoring served as controls. At the time of shock, we observed a significant decreased proportion of perfused intestinal-villi (villi-PPV) and sublingual percentage of perfused small vessels (SL-PPV), paralleling an increase in [Formula: see text] in both dobutamine and placebo groups. After starting resuscitation, villi-PPV and SL-PPV significantly increased in the dobutamine group with subsequent improvement of functional capillary density, whereas [Formula: see text] exhibited a corresponding significant decrease (repeated-measures ANOVA, P = 0.02 and P = 0.04 for time × group interactions and intergroup differences for villi-PPV and [Formula: see text], respectively). Variations in villi-PPV were paralleled by variations in [Formula: see text] (R2 = 0.88, P < 0.001) and these, in turn, by mesenteric lactate changes (R2 = 0.86, P < 0.001). There were no significant differences in cardiac output and systemic O2 delivery throughout the experiment. In conclusion, dynamic changes in microvascular blood flow heterogeneity at jejunal mucosa are closely related to the mesenteric O2 extraction ratio, suggesting a crucial role for microvascular blood flow distribution on O2 uptake during development and resuscitation from septic shock.NEW & NOTEWORTHY Our observations suggest that dynamic changes in the heterogeneity of microvascular blood flow at the gut mucosa are closely related to mesenteric O2 extraction, thus supporting the role of decreasing functional capillary density and increased intercapillary distances on alterations of O2 uptake during development and resuscitation from septic shock. Addition of a low-fixed dose of dobutamine might reverse such flow heterogeneity, improving microcirculatory flow distribution and tissue O2 consumption.


Asunto(s)
Dobutamina/farmacología , Intestinos/irrigación sanguínea , Intestinos/efectos de los fármacos , Microcirculación/efectos de los fármacos , Oxígeno/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Choque Séptico/tratamiento farmacológico , Animales , Análisis de los Gases de la Sangre/métodos , Gasto Cardíaco/efectos de los fármacos , Femenino , Hemodinámica/efectos de los fármacos , Mucosa Intestinal/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Resucitación/métodos , Choque Séptico/metabolismo , Porcinos
3.
Intensive Care Med ; 42(2): 211-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26578172

RESUMEN

PURPOSE: Septic shock has been associated with microvascular alterations and these in turn with the development of organ dysfunction. Despite advances in video microscopic techniques, evaluation of microcirculation at the bedside is still limited. Venous-to-arterial carbon dioxide difference (Pv-aCO2) may be increased even when venous O2 saturation (SvO2) and cardiac output look normal, which could suggests microvascular derangements. We sought to evaluate whether Pv-aCO2 can reflect the adequacy of microvascular perfusion during the early stages of resuscitation of septic shock. METHODS: Prospective observational study including 75 patients with septic shock in a 60-bed mixed ICU. Arterial and mixed-venous blood gases and hemodynamic variables were obtained at catheter insertion (T0) and 6 h after (T6). Using a sidestream dark-field device, we simultaneously acquired sublingual microcirculatory images for blinded semiquantitative analysis. Pv-aCO2 was defined as the difference between mixed-venous and arterial CO2 partial pressures. RESULTS: Progressively lower percentages of small perfused vessels (PPV), lower functional capillary density, and higher heterogeneity of microvascular blood flow were observed at higher Pv-aCO2 values at both T0 and T6. Pv-aCO2 was significantly correlated to PPV (T0: coefficient -5.35, 95 % CI -6.41 to -4.29, p < 0.001; T6: coefficient, -3.49, 95 % CI -4.43 to -2.55, p < 0.001) and changes in Pv-aCO2 between T0 and T6 were significantly related to changes in PPV (R (2) = 0.42, p < 0.001). Absolute values and changes in Pv-aCO2 were not related to global hemodynamic variables. Good agreement between venous-to-arterial CO2 and PPV was maintained even after corrections for the Haldane effect. CONCLUSIONS: During early phases of resuscitation of septic shock, Pv-aCO2 could reflect the adequacy of microvascular blood flow.


Asunto(s)
Arterias/fisiopatología , Dióxido de Carbono/sangre , Microcirculación/fisiología , Choque Séptico/fisiopatología , Venas/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Análisis de los Gases de la Sangre , Colombia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA