Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
2.
Invest Ophthalmol Vis Sci ; 59(3): 1454-1466, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625468

RESUMEN

Purpose: Wnt/ß-catenin signaling in the trabecular meshwork (TM) is required for maintaining normal intraocular pressure (IOP), although the mechanism(s) behind this are unknown. We hypothesize that Wnt/ß-catenin signaling regulates IOP via ß-catenin's effects on cadherin junctions. Methods: Nonglaucomatous primary human TM (NTM) cells were treated with or without 100 ng/ml Wnt3a, 1 µg/ml sFRP1, or both for 4 to 48 hours. Cells were immunostained for ß-catenin, total cadherins, or cadherin isoforms. Membrane proteins or whole-cell lysates were isolated for Western immunoblotting and probed for cadherin isoforms. RNA was extracted for cDNA synthesis and qPCR analysis of cadherin expression. Some NTM cells were cultured on electric plates for cell impedance assays. Ad5.CMV recombinant adenoviruses encoding K-cadherin, and/or sFRP1 were injected into eyes of 4- to 6-month-old female BALB/cJ mice (n = 8-10). Conscious IOPs were assessed for 35 days. Results: Upon Wnt3a treatment, total cadherin expression increased and ß-catenin accumulated at the TM cell membrane and on processes formed between TM cells. qPCR showed that Wnt3a significantly increased K-cadherin expression in NTM cells (P < 0.01, n = 3), and Western immunoblotting showed that Wnt3a increased K-cadherin in NTM cells, which was inhibited by the addition of sFRP1. Cell impedance assays showed that Wnt3a treatment increased transcellular resistance and anti-K-cadherin siRNA decreased transcellular resistance (P < 0.001, n = 4-6). Our in vivo study showed that K-cadherin significantly decreased sFRP1-induced ocular hypertension (P < 0.05, n = 6). Western immunoblotting also showed that K-cadherin alleviated sFRP1-induced ß-catenin decrease in mouse anterior segments. Conclusions: Our results suggest that cadherins play important roles in the regulation of TM homeostasis and IOP via the Wnt/ß-catenin pathway.


Asunto(s)
Cadherinas/fisiología , Presión Intraocular/fisiología , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt3A/farmacología , beta Catenina/fisiología , Animales , Western Blotting , Cadherinas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo
3.
Invest Ophthalmol Vis Sci ; 58(2): 1288-1295, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28241317

RESUMEN

Purpose: Increased intraocular pressure results from increased aqueous humor (AH) outflow resistance at the trabecular meshwork (TM) due to pathologic changes including the formation of cross-linked actin networks (CLANs). Transforming growth factor ß2 (TGFß2) is elevated in the AH and TM of primary open angle glaucoma (POAG) patients and induces POAG-associated TM changes, including CLANs. We determined the role of individual TGFß2 signaling pathways in CLAN formation. Methods: Cultured nonglaucomatous human TM (NTM) cells were treated with control or TGFß2, with or without the inhibitors of TGFß receptor, Smad3, c-Jun N-terminal kinases (JNK), extracellular signal regulated kinase (ERK), P38, or Rho-associated protein kinase (ROCK). NTM cells were cotreated with TGFß2 plus inhibitors for 10 days or pretreated with TGFß2 for 10 days followed by 1-hour inhibitor treatment. NTM cells were immunostained with phalloidin-Alexa-488 and 4',6-diamidino-2-phenylindole (DAPI). Data were analyzed using 1-way ANOVA and Dunnett's post hoc test. Results: TGFß2 significantly induced CLAN formation (n = 6 to 12, P < 0.05), which was completely inhibited by TGFß receptor, Smad3, and ERK inhibitors, as well as completely or partially inhibited by JNK, P38, and ROCK inhibitors, depending on cell strains. One-hour exposure to ROCK inhibitor completely resolved formed CLANs (P < 0.05), whereas TGFß receptor, Smad3 inhibitor, and ERK inhibitors resulted in partial or complete resolution. The JNK and P38 inhibitors showed partial or no resolution. Among these inhibitors, the ROCK inhibitor was the most disruptive to the actin stress fibers, whereas ERK inhibition showed the least disruption. Conclusions: TGFß2-induced CLANs in NTM cells were prevented and resolved using various pathway inhibitors. Apart from CLAN inhibition, some of these inhibitors also had different effects on actin stress fibers.


Asunto(s)
Actinas/metabolismo , Proteína smad3/metabolismo , Malla Trabecular/efectos de los fármacos , Factor de Crecimiento Transformador beta2/farmacología , Análisis de Varianza , Humor Acuoso/metabolismo , Western Blotting , Células Cultivadas , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta , Transducción de Señal/fisiología , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/antagonistas & inhibidores , Factor de Crecimiento Transformador beta2/fisiología
4.
Exp Eye Res ; 159: 16-22, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28238754

RESUMEN

One of the major causes of decreased vision, irreversible vision loss and blindness worldwide is glaucoma. Increased intraocular pressure (IOP) is a major risk factor associated with glaucoma and its molecular mechanisms are not fully understood. The trabecular meshwork (TM) is the primary site of injury in glaucoma, and its dysfunction results in elevated IOP. The glaucomatous TM has increased extracellular matrix deposition as well as cytoskeletal rearrangements referred to as cross-linked actin networks (CLANs) that consist of dome like structures consisting of hubs and spokes. CLANs are thought to play a role in increased aqueous humor outflow resistance and increased IOP by creating stiffer TM cells and tissue. CLANs are inducible by glucocorticoids (GCs) and TGFß2 in confluent TM cells and TM tissues. The signaling pathways of these induction agents give insight into the possible mechanisms of CLAN formation, but to date, the mechanism of CLANs regulation by these pathways has yet to be determined. Understanding the role CLANs play in IOP elevation and their mechanisms of induction and regulation may lead to novel treatment options to help prevent or intervene in glaucomatous damage to the trabecular meshwork.


Asunto(s)
Actinas/metabolismo , Glaucoma , Presión Intraocular/fisiología , Malla Trabecular/metabolismo , Humor Acuoso/metabolismo , Células Cultivadas , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/fisiopatología , Humanos , Transducción de Señal , Malla Trabecular/patología
5.
PLoS One ; 12(1): e0169671, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28068412

RESUMEN

The most common ocular side effect of glucocorticoid (GC) therapy is GC-induced ocular hypertension (OHT) and GC-induced glaucoma (GIG). GC-induced OHT occurs in about 40% of the general population, while the other 60% are resistant. This study aims to determine the genes and pathways involved in differential GC responsiveness in the trabecular meshwork (TM). Using paired bovine eyes, one eye was perfusion-cultured with 100nM dexamethasone (DEX), while the fellow eye was used to establish a bovine TM (BTM) cell strain. Based on maximum IOP change in the perfused eye, the BTM cell strain was identified as a DEX-responder or non-responder strain. Three responder and three non-responder BTM cell strains were cultured, treated with 0.1% ethanol or 100nM DEX for 7 days. RNA and proteins were extracted for RNA sequencing (RNAseq), qPCR, and Western immunoblotting (WB), respectively. Data were analyzed using the human and bovine genome databases as well as Tophat2 software. Genes were grouped and compared using Student's t-test. We found that DEX induced fibronectin expression in responder BTM cells but not in non-responder cells using WB. RNAseq showed between 93 and 606 differentially expressed genes in different expression groups between responder and non-responder BTM cells. The data generated by RNAseq were validated using qPCR. Pathway analyses showed 35 pathways associated with differentially expressed genes. These genes and pathways may play important roles in GC-induced OHT and will help us to better understand differential ocular responsiveness to GCs.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Malla Trabecular/citología , Transcriptoma , Animales , Bovinos , Biología Computacional/métodos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ARN , Transducción de Señal , Malla Trabecular/metabolismo
6.
Invest Ophthalmol Vis Sci ; 57(8): 3698-707, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27403998

RESUMEN

PURPOSE: Elevated intraocular pressure (IOP) in primary open-angle glaucoma (POAG) results from glaucomatous damage to the trabecular meshwork (TM). The glaucoma-associated factor TGFß2 is increased in aqueous humor and TM of POAG patients. We hypothesize that histone acetylation has a role in dysregulated TGFß2 expression. METHODS: Protein acetylation was compared between nonglaucomatous TM (NTM) and glaucomatous TM (GTM) cells using Western immunoblotting (WB). Nonglaucomatous TM cells were treated with 10 nM thailandepsin-A (TDP-A), a potent histone deacetylase inhibitor for 4 days. Total and nuclear proteins, RNA, and nuclear protein-DNA complexes were harvested for WB, quantitative PCR (qPCR), and chromatin immunoprecipitation (ChIP) assays, respectively. Paired bovine eyes were perfused with TDP-A versus DMSO, or TDP-A versus TDP-A plus the TGFß pathway inhibitor LY364947 for 5 to 9 days. Intraocular pressure, TM, and perfusate proteins were compared. RESULTS: We found increased acetylated histone 3 and total protein acetylation in the GTM cells and TDP-A treated NTM cells. Chromatin immunoprecipitation assays showed that TDP-A induced histone hyperacetylation associated with the TGFß2 promoter. This change of acetylation significantly increased TGFß2 mRNA and protein expression in NTM cells. In perfusion-cultured bovine eyes, TDP-A increased TGFß2 in the perfusate as well as elevated IOP. Histologic and immunofluorescent analyses showed increased extracellular matrix and cytoskeletal proteins in the TM of TDP-A treated bovine eyes. Cotreatment with the TGFß pathway inhibitor LY364947 blocked TDP-A-induced ocular hypertension. CONCLUSIONS: Our results suggest that histone acetylation has an important role in increased expression of the glaucoma-associated factor TGFß2. Histone hyperacetylation may be the initiator of glaucomatous damage to the TM.


Asunto(s)
Epigénesis Genética/genética , Glaucoma de Ángulo Abierto/genética , Inhibidores de Histona Desacetilasas/farmacología , Malla Trabecular/fisiología , Factor de Crecimiento Transformador beta2/genética , Acetilación , Animales , Bovinos , Células Cultivadas , Pirazoles/farmacología , Pirroles/farmacología , ARN Mensajero/metabolismo
7.
Exp Eye Res ; 148: 97-102, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27091054

RESUMEN

Primary Open Angle Glaucoma (POAG) is an irreversible, vision-threatening disease that affects millions worldwide. The principal risk factor of POAG is increased intraocular pressure (IOP) due to pathological changes in the trabecular meshwork (TM). The TGFß signaling pathway activator TGFß2 and the Wnt signaling pathway inhibitor secreted frizzled-related protein 1 (sFRP1) are elevated in the POAG TM. In this study, we determined whether there is a crosstalk between the TGFß/Smad pathway and the canonical Wnt pathway using luciferase reporter assays. Lentiviral luciferase reporter vectors for studying the TGFß/Smad pathway or the canonical Wnt pathway were transduced into primary human non-glaucomatous TM (NTM) cells. Cells were treated with or without a combination of 5 µg/ml TGFß2 and/or 100 ng/ml Wnt3a recombinant proteins, and luciferase levels were measured using a plate reader. We found that TGFß2 inhibited Wnt3a-induced canonical Wnt pathway activation, while Wnt3a inhibited TGFß2-induced TGFß/Smad pathway activation (n = 6, p < 0.05) in 3 NTM cell strains. We also found that knocking down of Smad4 or ß-catenin using siRNA in HTM5 cells transfected with similar luciferase reporter plasmids abolished the inhibitory effect of TGFß2 and/or Wnt3a on the other pathway (n = 6). Our results suggest the existence of a cross-inhibition between the TGFß/Smad and canonical Wnt pathways in the TM, and this cross-inhibition may be mediated by Smad4 and ß-catenin.


Asunto(s)
Glaucoma de Ángulo Abierto/metabolismo , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/fisiología , Vía de Señalización Wnt/fisiología , Proteína Wnt3A/fisiología , Anciano , Anciano de 80 o más Años , Western Blotting , Femenino , Humanos , Luciferasas/metabolismo , Masculino , Transducción de Señal/fisiología , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Proteína Wnt3A/metabolismo , Proteína Wnt3A/farmacología , beta Catenina/metabolismo
8.
Biochemistry ; 52(8): 1446-55, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23368961

RESUMEN

The aromatic amino acid hydroxylases tyrosine hydroxylase (TyrH) and phenylalanine hydroxylase (PheH) have essentially identical active sites; however, PheH is nearly incapable of hydroxylating tyrosine, while TyrH can readily hydroxylate both tyrosine and phenylalanine. Previous studies have indicated that Asp425 of TyrH is important in determining the substrate specificity of that enzyme [Daubner, S. C., Melendez, J., and Fitzpatrick, P. F. (2000) Biochemistry 39, 9652-9661]. Alanine-scanning mutagenesis of amino acids 423-427, a mobile loop containing Asp425, shows that only mutagenesis of Asp425 alters the activity of the enzyme significantly. Saturation mutagenesis of Asp425 results in large (up to 10(4)) decreases in the V(max) and V(max)/K(tyr) values for tyrosine hydroxylation, but only small decreases or even increases in the V(max) and V(max)/K(phe) values for phenylalanine hydroxylation. The decrease in the tyrosine hydroxylation activity of the mutant proteins is due to an uncoupling of tetrahydropterin oxidation from amino acid hydroxylation with tyrosine as the amino acid substrate. In contrast, with the exception of the D425W mutant, the extent of coupling of tetrahydropterin oxidation and amino acid hydroxylation is unaffected or increases with phenylalanine as the amino acid substrate. The decrease in the V(max) value with tyrosine as the substrate shows a negative correlation with the hydrophobicity of the amino acid residue at position 425. The results are consistent with a critical role of Asp425 being to prevent a hydrophobic interaction that results in a restricted active site in which hydroxylation of tyrosine does not occur.


Asunto(s)
Fenilalanina Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Alanina/genética , Alanina/metabolismo , Sustitución de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Hidroxilación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pterinas/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA