Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 24(10): 4453-4463, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30088318

RESUMEN

Climate and land-use change are the major drivers of global biodiversity loss. Their effects are particularly acute for wide-ranging consumers, but little is known about how these factors interact to affect the abundance of large carnivores and their herbivore prey. We analyzed population densities of a primary and secondary consumer (mule deer, Odocoileus hemionus, and mountain lion, Puma concolor) across a climatic gradient in western North America by combining satellite-based maps of plant productivity with estimates of animal abundance and foraging area derived from Global Positioning Systems telemetry data (GPS). Mule deer density exhibited a positive, linear relationship with plant productivity (r2  = 0.58), varying by a factor of 18 across the climate-vegetation gradient (range: 38-697 individuals/100 km2 ). Mountain lion home range size decreased in response to increasing primary productivity and consequent changes in the abundance of their herbivore prey (range: 20-450 km2 ). This pattern resulted in a strong, positive association between plant productivity and mountain lion density (r2  = 0.67). Despite varying densities, the ratio of prey to predator remained constant across the climatic gradient (mean ± SE = 363 ± 29 mule deer/mountain lion), suggesting that the determinacy of the effect of primary productivity on consumer density was conserved across trophic levels. As droughts and longer term climate changes reduce the suitability of marginal habitats, consumer home ranges will expand in order for individuals to meet basic nutritional requirements. These changes portend decreases in the abundance of large-bodied, wide-ranging wildlife through climatically driven reductions in carrying capacity, as well as increased human-wildlife interactions stemming from anthropogenic land use and habitat fragmentation.


Asunto(s)
Cambio Climático , Ciervos/fisiología , Ecosistema , Puma/fisiología , Animales , Conservación de los Recursos Naturales , Femenino , Sistemas de Información Geográfica , Fenómenos de Retorno al Lugar Habitual , Humanos , América del Norte , Plantas , Densidad de Población , Reproducción
2.
PLoS One ; 11(2): e0148780, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849642

RESUMEN

The effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival. Here, we evaluated macro-scale patterns in reproductive performance of a widely distributed ungulate (mule deer, Odocoileus hemionus) across contrasting climatological regimes using satellite-derived indices of primary productivity and plant phenology over eight degrees of latitude (890 km) in the American Southwest. The dataset comprised > 180,000 animal observations taken from 54 populations over eight years (2004-2011). Regionally, both the start and peak of growing season ("Start" and "Peak", respectively) are negatively and significantly correlated with latitude, an unusual pattern stemming from a change in the dominance of spring snowmelt in the north to the influence of the North American Monsoon in the south. Corresponding to the timing and variation in both the Start and Peak, mule deer reproduction was latest, lowest, and most variable at lower latitudes where plant phenology is timed to the onset of monsoonal moisture. Parturition dates closely tracked the growing season across space, lagging behind the Start and preceding the Peak by 27 and 23 days, respectively. Mean juvenile production increased, and variation decreased, with increasing latitude. Temporally, juvenile production was best predicted by primary productivity during summer, which encompassed late pregnancy, parturition, and early lactation. Our findings offer a parsimonious explanation of two key reproductive parameters in ungulate demography, timing of parturition and mean annual production, across latitude and changing climatological regimes. Practically, this demonstrates the potential for broad-scale modeling of couplings between climate, plant phenology, and animal populations using space-borne observations.


Asunto(s)
Cambio Climático , Ciervos/fisiología , Modelos Biológicos , Embarazo , Estaciones del Año , Nave Espacial , Animales , Femenino , Masculino , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA