Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(10): e47596, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23094066

RESUMEN

Membrane fusion is a crucial step in flavivirus infections and a potential target for antiviral strategies. Lipids and proteins play cooperative roles in the fusion process, which is triggered by the acidic pH inside the endosome. This acidic environment induces many changes in glycoprotein conformation and allows the action of a highly conserved hydrophobic sequence, the fusion peptide (FP). Despite the large volume of information available on the virus-triggered fusion process, little is known regarding the mechanisms behind flavivirus-cell membrane fusion. Here, we evaluated the contribution of a natural single amino acid difference on two flavivirus FPs, FLA(G) ((98)DRGWGNGCGLFGK(110)) and FLA(H) ((98)DRGWGNHCGLFGK(110)), and investigated the role of the charge of the target membrane on the fusion process. We used an in silico approach to simulate the interaction of the FPs with a lipid bilayer in a complementary way and used spectroscopic approaches to collect conformation information. We found that both peptides interact with neutral and anionic micelles, and molecular dynamics (MD) simulations showed the interaction of the FPs with the lipid bilayer. The participation of the indole ring of Trp appeared to be important for the anchoring of both peptides in the membrane model, as indicated by MD simulations and spectroscopic analyses. Mild differences between FLA(G) and FLA(H) were observed according to the pH and the charge of the target membrane model. The MD simulations of the membrane showed that both peptides adopted a bend structure, and an interaction between the aromatic residues was strongly suggested, which was also observed by circular dichroism in the presence of micelles. As the FPs of viral fusion proteins play a key role in the mechanism of viral fusion, understanding the interactions between peptides and membranes is crucial for medical science and biology and may contribute to the design of new antiviral drugs.


Asunto(s)
Flavivirus/química , Membrana Dobles de Lípidos/química , Péptidos/síntesis química , Triptófano/química , Proteínas Virales de Fusión/química , Secuencia de Aminoácidos , Dicroismo Circular , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Fusión de Membrana , Micelas , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Conformación Proteica , Espectrometría de Fluorescencia , Electricidad Estática
2.
Proteins ; 80(9): 2305-10, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22622959

RESUMEN

The folding process defines three-dimensional protein structures from their amino acid chains. A protein's structure determines its activity and properties; thus knowing such conformation on an atomic level is essential for both basic and applied studies of protein function and dynamics. However, the acquisition of such structures by experimental methods is slow and expensive, and current computational methods mostly depend on previously known structures to determine new ones. Here we present a new software called GSAFold that applies the generalized simulated annealing (GSA) algorithm on ab initio protein structure prediction. The GSA is a stochastic search algorithm employed in energy minimization and used in global optimization problems, especially those that depend on long-range interactions, such as gravity models and conformation optimization of small molecules. This new implementation applies, for the first time in ab initio protein structure prediction, an analytical inverse for the Visitation function of GSA. It also employs the broadly used NAMD Molecular Dynamics package to carry out energy calculations, allowing the user to select different force fields and parameterizations. Moreover, the software also allows the execution of several simulations simultaneously. Applications that depend on protein structures include rational drug design and structure-based protein function prediction. Applying GSAFold in a test peptide, it was possible to predict the structure of mastoparan-X to a root mean square deviation of 3.00 Å.


Asunto(s)
Algoritmos , Modelos Químicos , Proteínas/química , Programas Informáticos , Animales , Biología Computacional , Simulación por Computador , Péptidos y Proteínas de Señalización Intercelular , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Pliegue de Proteína , Proteínas/metabolismo , Avispas
3.
J Chem Theory Comput ; 8(7): 2197-203, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26588952

RESUMEN

Biomolecular dynamics studies using a QM/MM approach have been largely used especially to study enzymatic reactions. However, to the best of our knowledge, the very same approach has not been used to study the water/membrane interface using a quantum mechanical treatment for the lipids. Since a plethora of biochemical processes take place in this region, we believe that it is of primary importance to understand, at the level of molecular orbitals, the behavior of a drug in such an odd environment. In this work, we take advantage of an integration of the CPMD and the GROMACS code, using the Car-Parrinello method, to treat the benzocaine local anesthetic as well as two of the membrane lipids and the GROMOS force field to treat the remaining lipids and the water molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA