Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Phys ; 44(2): 181-194, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29656365

RESUMEN

Virus families have evolved different strategies for genome uncoating, which are also followed by recombinant vectors. Vectors derived from adeno-associated viruses (AAV) are considered as leading delivery tools for in vivo gene transfer, and in particular gene therapy. Using a combination of atomic force microscopy (AFM), biochemical experiments, and physical modeling, we investigated here the physical properties and stability of AAV vector particles. We first compared the morphological properties of AAV vectors derived from two different serotypes (AAV8 and AAV9). Furthermore, we triggered ssDNA uncoating by incubating vector particles to increasing controlled temperatures. Our analyses, performed at the single-particle level, indicate that genome release can occur in vitro via two alternative pathways: either the capsid remains intact and ejects linearly the ssDNA molecule, or the capsid is ruptured, leaving ssDNA in a compact entangled conformation. The analysis of the length distributions of ejected genomes further revealed a two-step ejection behavior. We propose a kinetic model aimed at quantitatively describing the evolution of capsids and genomes along the different pathways, as a function of time and temperature. This model allows quantifying the relative stability of AAV8 and AAV9 particles.


Asunto(s)
Cápside/metabolismo , Dependovirus/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Genómica , Termodinámica
2.
Med Sci (Paris) ; 31(5): 522-8, 2015 May.
Artículo en Francés | MEDLINE | ID: mdl-26059303

RESUMEN

Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level.


Asunto(s)
VIH-1/fisiología , VIH-1/ultraestructura , Microscopía de Fuerza Atómica , Animales , Cápside/ultraestructura , Diseño de Equipo , Proteínas del Virus de la Inmunodeficiencia Humana/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/ultraestructura , Humanos , Ratones , Micromanipulación/métodos , Microscopía de Fuerza Atómica/instrumentación , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Receptores del VIH/fisiología , Receptores del VIH/ultraestructura , Análisis Espectral/métodos , Estrés Mecánico , Fenómenos Fisiológicos de los Virus
3.
PLoS One ; 9(1): e83874, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475027

RESUMEN

HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP.


Asunto(s)
VIH-1/fisiología , ARN Viral , Virión , VIH-1/ultraestructura , Humanos , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Termodinámica , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA