Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Exp Med ; 24(1): 122, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856863

RESUMEN

Regulatory T cells (Tregs) are known to facilitate tumor progression by suppressing CD8+ T cells within the tumor microenvironment (TME), thereby also hampering the effectiveness of immune checkpoint inhibitors (ICIs). While systemic depletion of Tregs can enhance antitumor immunity, it also triggers undesirable autoimmune responses. Therefore, there is a need for therapeutic agents that selectively target Tregs within the TME without affecting systemic Tregs. In this study, as shown also by others, the chemokine (C-C motif) receptor 8 (CCR8) was found to be predominantly expressed on Tregs within the TME of both humans and mice, representing a unique target for selective depletion of tumor-residing Tregs. Based on this, we developed BAY 3375968, a novel anti-human CCR8 antibody, along with respective surrogate anti-mouse CCR8 antibodies, and demonstrated their in vitro mode-of-action through induction of potent antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities. In vivo, anti-mouse CCR8 antibodies effectively depleted Tregs within the TME primarily via ADCP, leading to increased CD8+ T cell infiltration and subsequent tumor growth inhibition across various cancer models. This monotherapeutic efficacy was significantly enhanced in combination with ICIs. Collectively, these findings suggest that CCR8 targeting represents a promising strategy for Treg depletion in cancer therapies. BAY 3375968 is currently under investigation in a Phase I clinical trial (NCT05537740).


Asunto(s)
Receptores CCR8 , Linfocitos T Reguladores , Microambiente Tumoral , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Receptores CCR8/inmunología , Receptores CCR8/antagonistas & inhibidores , Animales , Ratones , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Citotoxicidad Celular Dependiente de Anticuerpos , Depleción Linfocítica , Línea Celular Tumoral , Fagocitosis/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico
2.
Nucleic Acids Res ; 52(7): 3823-3836, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38421639

RESUMEN

Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.


Asunto(s)
Empalme Alternativo , Secuenciación de Nucleótidos de Alto Rendimiento , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Transcriptoma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Exones/genética , Dominios Proteicos
3.
Br J Pharmacol ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38339984

RESUMEN

A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA