Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(5): L052301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907508

RESUMEN

Phase transitions are crucial in shaping the collective dynamics of a broad spectrum of natural systems across disciplines. Here, we report two distinct heterogeneous nucleation facilitating single step and multistep phase transitions to global synchronization in a finite-size adaptive network due to the trade off between time scale adaptation and coupling strength disparities. Specifically, small intracluster nucleations coalesce either at the population interface or within the populations resulting in the two distinct phase transitions depending on the degree of the disparities. We find that the coupling strength disparity largely controls the nature of phase transition in the phase diagram irrespective of the adaptation disparity. We provide a mesoscopic description for the cluster dynamics using the collective coordinates approach that brilliantly captures the multicluster dynamics among the populations leading to distinct phase transitions. Further, we also deduce the upper bound for the coupling strength for the existence of two intraclusters explicitly in terms of adaptation and coupling strength disparities. These insights may have implications across domains ranging from neurological disorders to segregation dynamics in social networks.

2.
Sci Rep ; 14(1): 5713, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459077

RESUMEN

Modeling the functionality of the human brain is a major goal in neuroscience for which many powerful methodologies have been developed over the last decade. The impact of working memory and the associated brain regions on the brain dynamics is of particular interest due to their connection with many functions and malfunctions in the brain. In this context, the concept of brain flexibility has been developed for the characterization of brain functionality. We discuss emergence of brain flexibility that is commonly measured by the identification of changes in the cluster structure of co-active brain regions. We provide evidence that brain flexibility can be modeled by a system of coupled FitzHugh-Nagumo oscillators where the network structure is obtained from human brain Diffusion Tensor Imaging (DTI). Additionally, we propose a straightforward and computationally efficient alternative macroscopic measure, which is derived from the Pearson distance of functional brain matrices. This metric exhibits similarities to the established patterns of brain template flexibility that have been observed in prior investigations. Furthermore, we explore the significance of the brain's network structure and the strength of connections between network nodes or brain regions associated with working memory in the observation of patterns in networks flexibility. This work enriches our understanding of the interplay between the structure and function of dynamic brain networks and proposes a modeling strategy to study brain flexibility.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión Tensora , Humanos , Mapeo Encefálico/métodos , Imagen de Difusión Tensora/métodos , Estudios de Factibilidad , Encéfalo/diagnóstico por imagen , Memoria a Corto Plazo
4.
Chaos ; 33(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486668

RESUMEN

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

5.
Chaos ; 33(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463093

RESUMEN

Synchronization is an omnipresent collective phenomenon in nature and technology, whose understanding is still elusive for real-world systems in particular. We study the synchronization transition in a phase oscillator system with two nonvanishing Fourier-modes in the interaction function, hence going beyond the Kuramoto paradigm. We show that the transition scenarios crucially depend on the interplay of the two coupling modes. We describe the multistability induced by the presence of a second coupling mode. By extending the collective coordinate approach, we describe the emergence of various states observed in the transition from incoherence to coherence. Remarkably, our analysis suggests that, in essence, the two-mode coupling gives rise to states characterized by two independent but interacting groups of oscillators. We believe that these findings will stimulate future research on dynamical systems, including complex interaction functions beyond the Kuramoto-type.

6.
Chaos ; 33(2): 023123, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36859232

RESUMEN

Rhythmic activities that alternate between coherent and incoherent phases are ubiquitous in chemical, ecological, climate, or neural systems. Despite their importance, general mechanisms for their emergence are little understood. In order to fill this gap, we present a framework for describing the emergence of recurrent synchronization in complex networks with adaptive interactions. This phenomenon is manifested at the macroscopic level by temporal episodes of coherent and incoherent dynamics that alternate recurrently. At the same time, the dynamics of the individual nodes do not change qualitatively. We identify asymmetric adaptation rules and temporal separation between the adaptation and the dynamics of individual nodes as key features for the emergence of recurrent synchronization. Our results suggest that asymmetric adaptation might be a fundamental ingredient for recurrent synchronization phenomena as seen in pattern generators, e.g., in neuronal systems.

7.
Phys Rev Lett ; 130(6): 067402, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827552

RESUMEN

Phase transitions in equilibrium and nonequilibrium systems play a major role in the natural sciences. In dynamical networks, phase transitions organize qualitative changes in the collective behavior of coupled dynamical units. Adaptive dynamical networks feature a connectivity structure that changes over time, coevolving with the nodes' dynamical state. In this Letter, we show the emergence of two distinct first-order nonequilibrium phase transitions in a finite-size adaptive network of heterogeneous phase oscillators. Depending on the nature of defects in the internal frequency distribution, we observe either an abrupt single-step transition to full synchronization or a more gradual multistep transition. This observation has a striking resemblance to heterogeneous nucleation. We develop a mean-field approach to study the interplay between adaptivity and nodal heterogeneity and describe the dynamics of multicluster states and their role in determining the character of the phase transition. Our work provides a theoretical framework for studying the interplay between adaptivity and nodal heterogeneity.

8.
Phys Rev E ; 105(3-1): 034312, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35428128

RESUMEN

We consider an adaptive network, whose connection weights coevolve in congruence with the dynamical states of the local nodes that are under the influence of an external stimulus. The adaptive dynamical system mimics the adaptive synaptic connections common in neuronal networks. The adaptive network under external forcing displays exotic dynamical states such as itinerant chimeras whose population density of coherent and incoherent domains coevolves with the synaptic connection, bump states, and bump frequency cluster states, which do not exist in adaptive networks without forcing. In addition, the adaptive network also exhibits partial synchronization patterns such as phase and frequency clusters, forced entrained, and incoherent states. We introduce two measures for the strength of incoherence based on the standard deviation of the temporally averaged (mean) frequency and on the mean frequency to classify the emergent dynamical states as well as their transitions. We provide a two-parameter phase diagram showing the wealth of dynamical states. We additionally deduce the stability condition for the frequency-entrained state. We use the paradigmatic Kuramoto model of phase oscillators, which is a simple generic model that has been widely employed in unraveling a plethora of cooperative phenomena in natural and man-made systems.

10.
Front Netw Physiol ; 2: 904480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36926088

RESUMEN

In this work, we propose a dynamical systems perspective on the modeling of sepsis and its organ-damaging consequences. We develop a functional two-layer network model for sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the coevolutionary dynamics of parenchymal, immune cells, and cytokines. By means of the simple paradigmatic model of phase oscillators in a two-layer system, we analyze the emergence of organ threatening interactions between the dysregulated immune system and the parenchyma. We demonstrate that the complex cellular cooperation between parenchyma and stroma (immune layer) either in the physiological or in the pathological case can be related to dynamical patterns of the network. In this way we explain sepsis by the dysregulation of the healthy homeostatic state (frequency synchronized) leading to a pathological state (desynchronized or multifrequency cluster) in the parenchyma. We provide insight into the complex stabilizing and destabilizing interplay of parenchyma and stroma by determining critical interaction parameters. The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (response of the innate immune system) is represented by nodes of a duplex layer. Cytokine interaction is modeled by adaptive coupling weights between nodes representing immune cells (with fast adaptation timescale) and parenchymal cells (slow adaptation timescale), and between pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). The proposed model allows for a functional description of organ dysfunction in sepsis and the recurrence risk in a plausible pathophysiological context.

11.
Front Netw Physiol ; 2: 841829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36926089

RESUMEN

We study the collective dynamics in a population of excitable units (neurons) adaptively interacting with a pool of resources. The resource pool is influenced by the average activity of the population, whereas the feedback from the resources to the population is comprised of components acting homogeneously or inhomogeneously on individual units of the population. Moreover, the resource pool dynamics is assumed to be slow and has an oscillatory degree of freedom. We show that the feedback loop between the population and the resources can give rise to collective activity bursting in the population. To explain the mechanisms behind this emergent phenomenon, we combine the Ott-Antonsen reduction for the collective dynamics of the population and singular perturbation theory to obtain a reduced system describing the interaction between the population mean field and the resources.

12.
Chaos ; 31(7): 073128, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34340340

RESUMEN

Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized m-splay states constituting a special subclass of phase-locked states with vanishing mth order parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.

13.
Phys Rev E ; 103(4-1): 042315, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005899

RESUMEN

Power grid networks, as well as neuronal networks with synaptic plasticity, describe real-world systems of tremendous importance for our daily life. The investigation of these seemingly unrelated types of dynamical networks has attracted increasing attention over the past decade. In this paper, we provide insight into the fundamental relation between these two types of networks. For this, we consider well-established models based on phase oscillators and show their intimate relation. In particular, we prove that phase oscillator models with inertia can be viewed as a particular class of adaptive networks. This relation holds even for more general classes of power grid models that include voltage dynamics. As an immediate consequence of this relation, we discover a plethora of multicluster states for phase oscillators with inertia. Moreover, the phenomenon of cascading line failure in power grids is translated into an adaptive neuronal network.

14.
Phys Rev Lett ; 126(2): 028301, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512200

RESUMEN

Adaptive networks change their connectivity with time, depending on their dynamical state. While synchronization in structurally static networks has been studied extensively, this problem is much more challenging for adaptive networks. In this Letter, we develop the master stability approach for a large class of adaptive networks. This approach allows for reducing the synchronization problem for adaptive networks to a low-dimensional system, by decoupling topological and dynamical properties. We show how the interplay between adaptivity and network structure gives rise to the formation of stability islands. Moreover, we report a desynchronization transition and the emergence of complex partial synchronization patterns induced by an increasing overall coupling strength. We illustrate our findings using adaptive networks of coupled phase oscillators and FitzHugh-Nagumo neurons with synaptic plasticity.


Asunto(s)
Modelos Neurológicos , Neuronas/fisiología , Biofisica , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología
15.
Front Netw Physiol ; 1: 730385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36925568

RESUMEN

In this study, we provide a dynamical systems perspective to the modelling of pathological states induced by tumors or infection. A unified disease model is established using the innate immune system as the reference point. We propose a two-layer network model for carcinogenesis and sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show that the complex cellular cooperation between parenchyma and stroma (immune layer) in the physiological and pathological case can be qualitatively and functionally described by a simple paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression, and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and emergence of a pathological state (desynchronized or multifrequency cluster). The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled by adaptive coupling weights between the nodes representing the immune cells (with fast adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a correct functional context.

16.
Chaos ; 30(12): 123130, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33380049

RESUMEN

We study patterns of partial synchronization in a network of FitzHugh-Nagumo oscillators with empirical structural connectivity measured in human subjects. We report the spontaneous occurrence of synchronization phenomena that closely resemble the ones seen during epileptic seizures in humans. In order to obtain deeper insights into the interplay between dynamics and network topology, we perform long-term simulations of oscillatory dynamics on different paradigmatic network structures: random networks, regular nonlocally coupled ring networks, ring networks with fractal connectivities, and small-world networks with various rewiring probability. Among these networks, a small-world network with intermediate rewiring probability best mimics the findings achieved with the simulations using the empirical structural connectivity. For the other network topologies, either no spontaneously occurring epileptic-seizure-related synchronization phenomena can be observed in the simulated dynamics, or the overall degree of synchronization remains high throughout the simulation. This indicates that a topology with some balance between regularity and randomness favors the self-initiation and self-termination of episodes of seizure-like strong synchronization.


Asunto(s)
Epilepsia , Red Nerviosa , Simulación por Computador , Humanos , Convulsiones
17.
Chaos ; 30(5): 051104, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32491914

RESUMEN

Relay synchronization in complex networks is characterized by the synchronization of remote parts of the network due to their interaction via a relay. In multilayer networks, distant layers that are not connected directly can synchronize due to signal propagation via relay layers. In this work, we investigate relay synchronization of partial synchronization patterns like chimera states in three-layer networks of interacting FitzHugh-Nagumo oscillators. We demonstrate that the phenomenon of relay synchronization is robust to topological random inhomogeneities of small-world type in the layer networks. We show that including randomness in the connectivity structure either of the remote network layers or of the relay layer increases the range of interlayer coupling strength where relay synchronization can be observed.

18.
Phys Rev Lett ; 124(8): 088301, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167358

RESUMEN

We propose a concept to generate and stabilize diverse partial synchronization patterns (phase clusters) in adaptive networks which are widespread in neuroscience and social sciences, as well as biology, engineering, and other disciplines. We show by theoretical analysis and computer simulations that multiplexing in a multilayer network with symmetry can induce various stable phase cluster states in a situation where they are not stable or do not even exist in the single layer. Further, we develop a method for the analysis of Laplacian matrices of multiplex networks which allows for insight into the spectral structure of these networks enabling a reduction to the stability problem of single layers. We employ the multiplex decomposition to provide analytic results for the stability of the multilayer patterns. As local dynamics we use the paradigmatic Kuramoto phase oscillator, which is a simple generic model and has been successfully applied in the modeling of synchronization phenomena in a wide range of natural and technological systems.


Asunto(s)
Modelos Teóricos , Simulación por Computador , Modelos Neurológicos , Neurociencias/métodos , Oscilometría
19.
Chaos ; 29(10): 103134, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31675820

RESUMEN

Adaptive dynamical networks appear in various real-word systems. One of the simplest phenomenological models for investigating basic properties of adaptive networks is the system of coupled phase oscillators with adaptive couplings. In this paper, we investigate the dynamics of this system. We extend recent results on the appearance of hierarchical frequency multiclusters by investigating the effect of the time scale separation. We show that the slow adaptation in comparison with the fast phase dynamics is necessary for the emergence of the multiclusters and their stability. Additionally, we study the role of double antipodal clusters, which appear to be unstable for all considered parameter values. We show that such states can be observed for a relatively long time, i.e., they are metastable. A geometrical explanation for such an effect is based on the emergence of a heteroclinic orbit.

20.
PLoS One ; 14(11): e0225094, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31725782

RESUMEN

We report the phenomenon of frequency clustering in a network of Hodgkin-Huxley neurons with spike timing-dependent plasticity. The clustering leads to a splitting of a neural population into a few groups synchronized at different frequencies. In this regime, the amplitude of the mean field undergoes low-frequency modulations, which may contribute to the mechanism of the emergence of slow oscillations of neural activity observed in spectral power of local field potentials or electroencephalographic signals at high frequencies. In addition to numerical simulations of such multi-clusters, we investigate the mechanisms of the observed phenomena using the simplest case of two clusters. In particular, we propose a phenomenological model which describes the dynamics of two clusters taking into account the adaptation of coupling weights. We also determine the set of plasticity functions (update rules), which lead to multi-clustering.


Asunto(s)
Modelos Neurológicos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Análisis por Conglomerados , Análisis Numérico Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA