Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619007

RESUMEN

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Asunto(s)
Energía Solar , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Cambio Climático , Contaminación Ambiental , Tiempo (Meteorología)
2.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512633

RESUMEN

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/toxicidad , Ecosistema , Rayos Ultravioleta , Cambio Climático , Contaminantes Químicos del Agua/análisis
3.
Photochem Photobiol Sci ; 21(3): 373-384, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35195892

RESUMEN

The status of the stratospheric ozone layer is assessed by a panel of experts every 4 years. Reports prepared by this panel include a section with common questions and answers (Q&A) about ozone depletion and related matters. Since 2002, this Q&A supplement has featured a plot comparing historical and current ultraviolet (UV) Index data from Palmer Station, Antarctica (64° S), with measurements at San Diego, California (32° N), and Barrow, Alaska (79° N). The assumptions in generating these plots are discussed and an updated version is presented. The revised plot uses additional data up to the year 2020 and the methods used to create it are better defined and substantiated compared to those used for the legacy plot. Differences between the old and new UV Index values are small (typically < 5%). Both versions illustrate that the ozone hole has led to a large increase in the UV Index at Palmer Station. Between mid-September and mid-November, the maximum UV Index at this site has more than doubled compared to the pre-ozone-hole era (i.e., prior to 1980). When Palmer Station was below the ozone hole in December 1998, an "extreme" UV Index of 14 was observed, exceeding the highest UV Index of 12 ever measured at San Diego despite the city's subtropical latitude. Increases in the UV Index at Barrow and San Diego remain below 40% and 3%, respectively.


Asunto(s)
Pérdida de Ozono , Ozono , Regiones Antárticas , California , Ozono/análisis , Rayos Ultravioleta
4.
Glob Chang Biol ; 27(22): 5681-5683, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34392574

RESUMEN

The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.


Asunto(s)
Pérdida de Ozono , Ozono , Cambio Climático , Ecosistema , Humanos , Ozono Estratosférico , Rayos Ultravioleta/efectos adversos
5.
Curr Biol ; 31(14): R885-R887, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34314709

RESUMEN

As well as guiding pollinators to the centre of flowers, areas of the corolla that absorb UV radiation may help to protect floral reproductive parts from solar UV radiation that would otherwise be reflected onto them. In their recent article, 'Floral pigmentation has responded rapidly to global change in ozone and temperature', Koski et al.1 compared herbarium specimens collected between 1941 and 2017 to investigate whether the size of the UV-absorbing area in the centre of flowers (called 'bullseyes', UV proportion, or UVP) has changed relative to the size of the flower over this period. The article, and a subsequent feature2, describe an increase in UVP of ∼2% per year across all taxa examined. However, the study's main conclusion that this trend can be partially related to changes in ozone and temperature does not withstand close examination.


Asunto(s)
Flores , Ozono Estratosférico , Pigmentación , Reproducción , Rayos Ultravioleta
6.
Geophys Res Lett ; 47(24): e2020GL090844, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35860747

RESUMEN

Measurements of solar ultraviolet radiation (UVR) performed between January and June 2020 at 10 Arctic and subarctic locations are compared with historical observations. Differences between 2020 and prior years are also assessed with total ozone column and UVR data from satellites. Erythemal (sunburning) UVR is quantified with the UV Index (UVI) derived from these measurements. UVI data show unprecedently large anomalies, occurring mostly between early March and mid-April 2020. For several days, UVIs observed in 2020 exceeded measurements of previous years by up to 140%. Historical means were surpassed by more than six standard deviations at several locations in the Arctic. In northern Canada, the average UVI for March was about 75% larger than usual. UVIs in April 2020 were elevated on average by about 25% at all sites. However, absolute anomalies remained below 3.0 UVI units because the enhancements occurred during times when the solar elevation was still low.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...