Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762454

RESUMEN

Climate change results in exceptional environmental conditions and drives the migration of pathogens to which local plants are not adapted. Biotic stress disrupts plants' metabolism, fitness, and performance, ultimately impacting their productivity. It is therefore necessary to develop strategies for improving plant resistance by promoting stress responsiveness and resilience in an environmentally friendly and sustainable way. The aim of this study was to investigate whether priming tobacco plants with a formulation containing silicon-stabilised hybrid lipid nanoparticles functionalised with quercetin (referred to as GS3 phyto-courier) can protect against biotic stress triggered by Agrobacterium tumefaciens leaf infiltration. Tobacco leaves were primed via infiltration or spraying with the GS3 phyto-courier, as well as with a buffer (B) and free quercetin (Q) solution serving as controls prior to the biotic stress. Leaves were then sampled four days after bacterial infiltration for gene expression analysis and microscopy. The investigated genes increased in expression after stress, both in leaves treated with the phyto-courier and control solutions. A trend towards lower values was observed in the presence of the GS3 phyto-courier for genes encoding chitinases and pathogenesis-related proteins. Agroinfiltrated leaves sprayed with GS3 confirmed the significant lower expression of the pathogenesis-related gene PR-1a and showed higher expression of peroxidase and serine threonine kinase. Microscopy revealed swelling of the chloroplasts in the parenchyma of stressed leaves treated with B; however, GS3 preserved the chloroplasts' mean area under stress. Furthermore, the UV spectrum of free Q solution and of quercetin freshly extracted from GS3 revealed a different spectral signature with higher values of maximum absorbance (Amax) of the flavonoid in the latter, suggesting that the silicon-stabilised hybrid lipid nanoparticles protect quercetin against oxidative degradation.

2.
Front Plant Sci ; 14: 1143961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021306

RESUMEN

Introduction: Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have been done to better understand the complex interplay between pathways involved in the suberization process in model plants. However, the regulation mechanisms which orchestrate this complex process are still under investigation. Our previous studies highlighted a number of transcription factor candidates from the Myeloblastosis (MYB) transcription factor family which might regulate suberization in russeted or suberized apple fruit skin. Among these, we identified MdMYB68, which was co-expressed with number of well-known key suberin biosynthesis genes. Method: To validate the MdMYB68 function, we conducted an heterologous transient expression in Nicotiana benthamiana combined with whole gene expression profiling analysis (RNA-Seq), quantification of lipids and cell wall monosaccharides, and microscopy. Results: MdMYB68 overexpression is able to trigger the expression of the whole suberin biosynthesis pathway. The lipid content analysis confirmed that MdMYB68 regulates the deposition of suberin in cell walls. Furthermore, we also investigated the alteration of the non-lipid cell wall components and showed that MdMYB68 triggers a massive modification of hemicelluloses and pectins. These results were finally supported by the microscopy. Discussion: Once again, we demonstrated that the heterologous transient expression in N. benthamiana coupled with RNA-seq is a powerful and efficient tool to investigate the function of suberin related transcription factors. Here, we suggest MdMYB68 as a new regulator of the aliphatic and aromatic suberin deposition in apple fruit, and further describe, for the first time, rearrangements occurring in the carbohydrate cell wall matrix, preparing this suberin deposition.

3.
Life (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36836772

RESUMEN

Brodifacoum is the most common rodenticide used for the eradication of invasive rodents from islands. It blocks the vitamin K cycle, resulting in hemorrhages in target mammals. Non-target species may be incidentally exposed to brodifacoum, including marine species. A case study conducted on the Italian Marine Protected Area of Tavolara Island was reported after a rodent eradication using the aerial broadcast of a brodifacoum pellet. Brodifacoum presence and effects on non-target marine organisms were investigated. Different fish species were sampled, and a set of analyses was conducted to determine vitamin K and vitamin K epoxide reductase concentrations, prothrombin time, and erythrocytic nuclear abnormalities (ENA) assay. In all the examined organisms, brodifacoum was not detected. The results obtained showed differences in vitamin K and vitamin K epoxide concentrations among the samples studied, with a positive correlation for three species between vitamin K, vitamin K epoxide, and fish weight. The prothrombin time assay showed a good blood clotting capacity in the fish. Higher abnormality values were recorded for four species. The results of this study suggest that it is possible to hypothesize that the sampled fish were not likely to have been exposed to brodifacoum and that consequently there are no negative issues concerning human consumption.

4.
Sci Total Environ ; 854: 158774, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108852

RESUMEN

In the last decade, the exploration of deep space has become the objective of the national space programs of many countries. The International Space Exploration Coordination Group has set a roadmap whose long-range strategy envisions the expansion of human presence in the solar system to progress with exploration and knowledge and to accelerate innovation. Crewed missions to Mars could be envisaged by 2040. In this scenario, finding ways to use the local resources for the provision of food, construction materials, propellants, pharmaceuticals is needed. Plants are important resources for deep space manned missions because they produce phytochemicals of pharmaceutical relevance, are sources of food and provide oxygen which is crucial in bioregenerative life support systems. Growth analysis and plant biomass yield have been previously evaluated on Martian regolith simulants; however, molecular approaches employing gene expression analysis and proteomics are still missing. The present work aims at filling this gap by providing molecular data on a representative member of the Poaceae, Lolium multiflorum Lam., grown on potting soil and a Martian regolith simulant (MMS-1). The molecular data were complemented with optical microscopy of root/leaf tissues and physico-chemical analyses. The results show that the plants grew for 2 weeks on regolith simulants. The leaves were bent downwards and chlorotic, the roots developed a lacunar aerenchyma and small brownish deposits containing Fe were observed. Gene expression analysis and proteomics revealed changes in transcripts related to the phenylpropanoid pathway, stress response, primary metabolism and proteins involved in translation and DNA methylation. Additionally, the growth of plants slightly but significantly modified the pH of the regolith simulants. The results here presented constitute a useful resource to get a comprehensive understanding of the major factors impacting the growth of plants on MMS-1.


Asunto(s)
Lolium , Marte , Vuelo Espacial , Humanos , Medio Ambiente Extraterrestre/química , Italia
5.
Front Plant Sci ; 13: 1039014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275517

RESUMEN

Our previous studies, comparing russeted vs. waxy apple skin, highlighted a MYeloBlastosys (Myb) transcription factor (MdMYB52), which displayed a correlation with genes associated to the suberization process. The present article aims to assess its role and function in the suberization process. Phylogenetic analyses and research against Arabidopsis thaliana MYBs database were first performed and the tissue specific expression of MdMYB52 was investigated using RT-qPCR. The function of MdMYB52 was further investigated using Agrobacterium-mediated transient overexpression in Nicotiana benthamiana leaves. An RNA-Seq analysis was performed to highlight differentially regulated genes in response MdMYB52. Transcriptomic data were supported by analytical chemistry and microscopy. A massive decreased expression of photosynthetic and primary metabolism pathways was observed with a concomitant increased expression of genes associated with phenylpropanoid and lignin biosynthesis, cell wall modification and senescence. Interestingly key genes involved in the synthesis of suberin phenolic components were observed. The analytical chemistry displayed a strong increase in the lignin content in the cell walls during MdMYB52 expression. More specifically, an enrichment in G-Unit lignin residues was observed, supporting transcriptomic data as well as previous work describing the suberin phenolic domain as a G-unit enriched lignin-like polymer. The time-course qPCR analysis revealed that the observed stress response, might be explain by this lignin biosynthesis and by a possible programmed senescence triggered by MdMYB52. The present work supports a crucial regulatory role for MdMYB52 in the biosynthesis of the suberin phenolic domain and possibly in the fate of suberized cells in russeted apple skins.

6.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830202

RESUMEN

Callogenesis, the process during which explants derived from differentiated plant tissues are subjected to a trans-differentiation step characterized by the proliferation of a mass of cells, is fundamental to indirect organogenesis and the establishment of cell suspension cultures. Therefore, understanding how callogenesis takes place is helpful to plant tissue culture, as well as to plant biotechnology and bioprocess engineering. The common herbaceous plant stinging nettle (Urtica dioica L.) is a species producing cellulosic fibres (the bast fibres) and a whole array of phytochemicals for pharmacological, nutraceutical and cosmeceutical use. Thus, it is of interest as a potential multi-purpose plant. In this study, callogenesis in internode explants of a nettle fibre clone (clone 13) was studied using RNA-Seq to understand which gene ontologies predominate at different time points. Callogenesis was induced with the plant growth regulators α-napthaleneacetic acid (NAA) and 6-benzyl aminopurine (BAP) after having determined their optimal concentrations. The process was studied over a period of 34 days, a time point at which a well-visible callus mass developed on the explants. The bioinformatic analysis of the transcriptomic dataset revealed specific gene ontologies characterizing each of the four time points investigated (0, 1, 10 and 34 days). The results show that, while the advanced stage of callogenesis is characterized by the iron deficiency response triggered by the high levels of reactive oxygen species accumulated by the proliferating cell mass, the intermediate and early phases are dominated by ontologies related to the immune response and cell wall loosening, respectively.


Asunto(s)
Desarrollo de la Planta/genética , Transcriptoma/genética , Urtica dioica/crecimiento & desarrollo , Urtica dioica/genética , Compuestos de Bencilo/metabolismo , Compuestos de Bencilo/farmacología , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Hierro/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Purinas/metabolismo , Purinas/farmacología , RNA-Seq/métodos , Especies Reactivas de Oxígeno/metabolismo , Urtica dioica/citología , Urtica dioica/metabolismo
7.
Cells ; 10(9)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34571944

RESUMEN

The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.


Asunto(s)
Benzamidas/farmacología , Pared Celular/metabolismo , Craterostigma/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitrilos/farmacología , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Craterostigma/efectos de los fármacos , Craterostigma/crecimiento & desarrollo , Sequías , Herbicidas/farmacología , Proteínas de Plantas/genética , Proteoma/análisis , Proteoma/efectos de los fármacos
8.
Genes (Basel) ; 12(8)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34440339

RESUMEN

Salinity is a form of abiotic stress that impacts growth and development in several economically relevant crops and is a top-ranking threat to agriculture, considering the average rise in the sea level caused by global warming. Tomato is moderately sensitive to salinity and shows adaptive mechanisms to this abiotic stressor. A case study on the dwarf tomato model Micro-Tom is here presented in which the response to salt stress (NaCl 200 mM) was investigated to shed light on the changes occurring at the expression level in genes involved in cell wall-related processes, phenylpropanoid pathway, stress response, volatiles' emission and secondary metabolites' production. In particular, the response was analyzed by sampling older/younger leaflets positioned at different stem heights (top and bottom of the stem) and locations along the rachis (terminal and lateral) with the goal of identifying the most responsive one(s). Tomato plants cv. Micro-Tom responded to increasing concentrations of NaCl (0-100-200-400 mM) by reducing the leaf biomass, stem diameter and height. Microscopy revealed stronger effects on leaves sampled at the bottom and the expression analysis identified clusters of genes expressed preferentially in older or younger leaflets. Stress-related genes displayed a stronger induction in lateral leaflets sampled at the bottom. In conclusion, in tomato cv. Micro-Tom subjected to salt stress, the bottom leaflets showed stronger stress signs and response, while top leaflets were less impacted by the abiotic stressor and had an increased expression of cell wall-related genes involved in expansion.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Salinidad , Solanum lycopersicum/genética , Genes de Plantas , Modelos Biológicos , Fenilpropionatos/metabolismo , Hojas de la Planta/metabolismo , Estrés Salino
9.
Sci Rep ; 11(1): 6945, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767326

RESUMEN

Carbon nanosheets are two-dimensional nanostructured materials that have applications as energy storage devices, electrochemical sensors, sample supports, filtration membranes, thanks to their high porosity and surface area. Here, for the first time, carbon nanosheets have been prepared from the stems and leaves of a nettle fibre clone, by using a cheap and straight-forward procedure that can be easily scaled up. The nanomaterial shows interesting physical parameters, namely interconnectivity of pores, graphitization, surface area and pore width. These characteristics are similar to those described for the nanomaterials obtained from other fibre crops. However, the advantage of nettle over other plants is its fast growth and easy propagation of homogeneous material using stem cuttings. This last aspect guarantees homogeneity of the starting raw material, a feature that is sought-after to get a nanomaterial with homogeneous and reproducible properties. To evaluate the potential toxic effects if released in the environment, an assessment of the impact on plant reproduction performance and microalgal growth has been carried out by using tobacco pollen cells and the green microalga Pseudokirchneriella subcapitata. No inhibitory effects on pollen germination are recorded, while algal growth inhibition is observed at higher concentrations of leaf carbon nanosheets with lower graphitization degree.


Asunto(s)
Carbono/toxicidad , Nanoestructuras/toxicidad , Urtica dioica , Microalgas , Nicotiana , Pruebas de Toxicidad
10.
Plant Cell Physiol ; 62(10): 1509-1527, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33594421

RESUMEN

Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained. Histochemistry allows the identification and localization, at the cellular level, of biomolecules and organelles in different types of cells and tissues, based on the use of specific staining reactions and imaging. Histochemical techniques are also widely used for the in vivo localization of promoters in specific tissues, as well as to identify specific cell wall components such as lignin and polysaccharides. Histochemistry also enables the study of plant reactions to environmental constraints, e.g. the production of reactive oxygen species (ROS) can be traced by applying histochemical staining techniques. The possibility of detecting ROS and localizing them at the cellular level is vital in establishing the mechanisms involved in the sensitivity and tolerance to different stress conditions in plants. This review comprehensively highlights the additional value of histochemistry as a complementary technique to high-throughput approaches for the study of the plant response to environmental constraints. Moreover, here we have provided an extensive survey of the available plant histochemical staining methods used for the localization of metals, minerals, secondary metabolites, cell wall components, and the detection of ROS production in plant cells. The use of recent technological advances like CRISPR/Cas9-based genome-editing for histological application is also addressed. This review also surveys the available literature data on histochemical techniques used to study the response of plants to abiotic stresses and to identify the effects at the tissue and cell levels.


Asunto(s)
Botánica/métodos , Ensayos Analíticos de Alto Rendimiento , Biología Molecular/métodos , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico , Ambiente
11.
ACS Nano ; 15(2): 3061-3069, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33523648

RESUMEN

Global warming and sea level rise are serious threats to agriculture. The negative effects caused by severe salinity include discoloration and reduced surface of the leaves, as well as wilting due to an impaired uptake of water from the soil by roots. Nanotechnology is emerging as a valuable ally in agriculture: several studies have indeed already proven the role of silicon nanoparticles in ameliorating the conditions of plants subjected to (a) biotic stressors. Here, we introduce the concept of phyto-courier: hydrolyzable nanoparticles of porous silicon, stabilized with the nonreducing saccharide trehalose and containing different combinations of lipids and/or amino acids, were used as vehicle for the delivery of the bioactive compound quercetin to the leaves of salt-stressed hemp (Cannabis sativa L., Santhica 27). Hemp was used as a representative model of an economically important crop with multiple uses. Quercetin is an antioxidant known to scavenge reactive oxygen species in cells. Four different silicon-based formulations were administered via spraying in order to investigate their ability to improve the plant's stress response, thereby acting as nano-biostimulants. We show that two formulations proved to be effective at decreasing stress symptoms by modulating the amount of soluble sugars and the expression of genes that are markers of stress-response in hemp. The study proves the suitability of the phyto-courier technology for agricultural applications aimed at crop protection.


Asunto(s)
Cannabis , Salinidad , Antioxidantes , Hojas de la Planta , Silicio
12.
Molecules ; 26(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572971

RESUMEN

Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a "weak link" from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop "hot spots" for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure-stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions.


Asunto(s)
Quitinasas/química , Estabilidad de Enzimas/genética , Extremófilos/química , Conformación Proteica , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Quitinasas/genética , Quitinasas/ultraestructura , Biología Computacional , Extremófilos/enzimología , Extremófilos/genética , Calor , Simulación de Dinámica Molecular , Estabilidad Proteica
13.
Hortic Res ; 8(1): 12, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33384418

RESUMEN

Sweet cherry (Prunus avium L.) is a stone fruit widely consumed and appreciated for its organoleptic properties, as well as its nutraceutical potential. We here investigated the characteristics of six non-commercial Tuscan varieties of sweet cherry maintained at the Regional Germplasm Bank of the CNR-IBE in Follonica (Italy) and sampled ca. 60 days post-anthesis over three consecutive years (2016-2017-2018). We adopted an approach merging genotyping and targeted gene expression profiling with metabolomics. To complement the data, a study of the soluble proteomes was also performed on two varieties showing the highest content of flavonoids. Metabolomics identified the presence of flavanols and proanthocyanidins in highest abundance in the varieties Morellona and Crognola, while gene expression revealed that some differences were present in genes involved in the phenylpropanoid pathway during the 3 years and among the varieties. Finally, proteomics on Morellona and Crognola showed variations in proteins involved in stress response, primary metabolism and cell wall expansion. To the best of our knowledge, this is the first multi-pronged study focused on Tuscan sweet cherry varieties providing insights into the differential abundance of genes, proteins and metabolites.

14.
Physiol Plant ; 171(4): 476-482, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32208519

RESUMEN

Silicon, a quasi-essential element for plants, improves vigour and resilience under stress. Recently, studies on textile hemp (Cannabis sativa L.) showed its genetic predisposition to uptake silicic acid and accumulate it as silica in epidermal leaf cells and trichomes. Here, microscopy, silicon quantification and gene expression analysis of candidate genes involved in salt stress were performed in hemp to investigate whether the metalloid protects against salinity. The results obtained with microscopy reveal that silicon treatment ameliorated the symptoms of salinity in older fan leaves, where the xylem tissue showed vessels with a wider lumen. In younger ones, it was difficult to assess any mitigation of stress symptoms after silicon application. At the gene level, salinity with and without silicon induced the expression of a putative Si efflux transporter gene 2 (low silicon 2, Lsi2). The addition of the metalloid did not result in any statistically significant changes in the expression of genes involved in stress response, although a trend towards a decrease was observed. In conclusion, our results show that hemp stress symptoms can be alleviated in older leaves by silicon application, that the metalloid is accumulated in fan leaves and highlight one putative rice Lsi2 orthologue as responsive to salinity.


Asunto(s)
Cannabis , Oryza , Hojas de la Planta , Salinidad , Estrés Salino , Silicio/farmacología
15.
Biomolecules ; 10(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906642

RESUMEN

Salinity is an abiotic stress that affects agriculture by severely impacting crop growth and, consequently, final yield. Considering that sea levels rise at an alarming rate of >3 mm per year, it is clear that salt stress constitutes a top-ranking threat to agriculture. Among the economically important crops that are sensitive to high salinity is tomato (Solanum lycopersicum L.), a cultivar that is more affected by salt stress than its wild counterparts. A strong body of evidence in the literature has proven the beneficial role of the quasi-essential metalloid silicon (Si), which increases the vigor and protects plants against (a)biotic stresses. This protection is realized by precipitating in the cell walls as opaline silica that constitutes a mechanical barrier to the entry of phytopathogens. With respect to Si accumulation, tomato is classified as a non-accumulator (an excluder), similarly to other members of the nightshade family, such as tobacco. Despite the low capacity of accumulating Si, when supplied to tomato plants, the metalloid improves growth under (a)biotic stress conditions, e.g., by enhancing the yield of fruits or by improving vegetative growth through the modulation of physiological parameters. In light of the benefits of Si in crop protection, the available literature data on the effects of this metalloid in mitigating salt stress in tomato are reviewed with a perspective on its use as a biostimulant, boosting the production of fruits as well as their post-harvest stability.


Asunto(s)
Silicio/farmacología , Solanum lycopersicum/efectos de los fármacos , Oligoelementos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Salinidad , Cloruro de Sodio/toxicidad , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
16.
Int J Mol Sci ; 21(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481765

RESUMEN

Callose is an important biopolymer of ß-1,3-linked glucose units involved in different phases of plant development, reproduction and response to external stimuli. It is synthesized by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane via transmembrane domains. Several genes encoding CalS have been characterized in higher plants with 12 reported in the model organism Arabidopsis thaliana. Recently, the de novo transcriptome of a fibre-producing clone of stinging nettle (Urtica dioica L.) was published and here it is mined for CalS genes with the aim of identifying members differentially expressed in the core and cortical tissues of the stem. The goal is to understand whether specific CalS genes are associated with distinct developmental stages of the stem internodes (elongation, thickening). Nine genes, eight of which encoding full-length CalS, are identified in stinging nettle. The phylogenetic analysis with CalS proteins from other fibre crops, namely textile hemp and flax, reveals grouping into 6 clades. The expression profiles in nettle tissues (roots, leaves, stem internodes sampled at different heights) reveal differences that are most noteworthy in roots vs leaves. Two CalS are differentially expressed in the internodes sampled at the top and middle of the stem. Implications of their role in nettle stem tissue development are discussed.


Asunto(s)
Biopolímeros/química , Carbohidratos/química , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/metabolismo , Urtica dioica/enzimología , Secuencias de Aminoácidos , Arabidopsis/enzimología , Biología Computacional , Perfilación de la Expresión Génica , Glucanos/metabolismo , Filogenia , Hojas de la Planta/enzimología , Raíces de Plantas/enzimología , Tallos de la Planta/enzimología , Regiones Promotoras Genéticas
17.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752217

RESUMEN

Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic 'hub'-the phenylpropanoid pathway-from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (Cannabis sativa L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought.


Asunto(s)
Cannabis/crecimiento & desarrollo , Nitrógeno/farmacología , Cannabinoides/metabolismo , Cannabis/efectos de los fármacos , Cannabis/metabolismo , Flavonoides/metabolismo , Lignina/metabolismo , Polifenoles/metabolismo , Metabolismo Secundario
18.
Plant Direct ; 3(8): e00151, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31417976

RESUMEN

Stinging nettle (Urtica dioica L.) produces silky cellulosic fibres, as well as bioactive molecules. To improve the knowledge on nettle and enhance its opportunities of exploitation, a draft transcriptome of the "clone 13" (a fibre clone) is here presented. The transcriptome of whole internodes sampled at the top and middle of the stem is then compared with the core and cortical tissues sampled at the bottom. Young internodes show an enrichment in genes involved in the biosynthesis of phytohormones (auxins and jasmonic acid) and secondary metabolites (flavonoids). The core of internodes collected at the bottom of the stem is enriched in genes partaking in different aspects of secondary cell wall formation (cellulose, hemicellulose, lignin biosynthesis), while the cortical tissues reveal the presence of a C starvation signal probably due to the UDP-glucose demand necessary for the thickening phase of bast fibres. Cell wall analysis indicates a difference in rhamnogalacturonan structure/composition of mature bast fibres, as evidenced by the higher levels of galactose measured, as well as the occurrence of more water-soluble pectins in elongating internodes. The targeted quantification of phenolics shows that the middle internode and the cortical tissues at the bottom have higher contents than top internodes. Ultrastructural analyses reveal the presence of a gelatinous layer in bast fibres with a lamellar structure. The data presented will be an important resource and reference for future molecular studies on a neglected fibre crop.

19.
Int J Mol Sci ; 20(14)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336562

RESUMEN

Sweet cherries are non-climacteric fruits whose early development is characterized by high levels of the phytohormone jasmonic acid (JA). Important parameters, such as firmness and susceptibility to cracking, can be affected by pre- and postharvest treatments of sweet cherries with JA. Despite the impact of JA on sweet cherry development and fruit characteristics, there are no studies (to the best of our knowledge) identifying the genes involved in the JA biosynthetic pathway in this species. We herein identify the sweet cherry members of the lipoxygenase family (13-LOX); allene oxide synthase, allene oxide cyclase and 12-oxo-phytodienoic acid reductase 3, as well as genes encoding the transcriptional master regulator MYC2. We analyze their expression pattern in four non-commercial Tuscan varieties ('Carlotta', 'Maggiola', 'Morellona', 'Crognola') having different levels of bioactives (namely phenolics). The highest differences are found in two genes encoding 13-LOX in the variety 'Maggiola' and one MYC2 isoform in 'Morellona'. No statistically-significant variations are instead present in the allene oxide synthase, allene oxide cyclase and 12-oxo-phytodienoic acid reductase 3. Our data pave the way to follow-up studies on the JA signaling pathway in these ancient varieties, for example in relation to development and post-harvest storage.


Asunto(s)
Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Análisis de Varianza , Cromatografía Líquida de Alta Presión , Biología Computacional/métodos , Perfilación de la Expresión Génica , Fenoles/metabolismo , Filogenia , Prunus avium/clasificación
20.
Molecules ; 24(8)2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31013661

RESUMEN

The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Frutas , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Biológicos , Ácido Oleanólico , Proteínas de Plantas , Prunus avium , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Frutas/genética , Frutas/metabolismo , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Prunus avium/genética , Prunus avium/metabolismo , Ácido Ursólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...