Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1508, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374041

RESUMEN

Understanding the mechanisms that drive TDP-43 pathology is integral to combating amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases. Here we generated a longitudinal quantitative proteomic map of the cortex from the cytoplasmic TDP-43 rNLS8 mouse model of ALS and FTLD, and developed a complementary open-access webtool, TDP-map ( https://shiny.rcc.uq.edu.au/TDP-map/ ). We identified distinct protein subsets enriched for diverse biological pathways with temporal alterations in protein abundance, including increases in protein folding factors prior to disease onset. This included increased levels of DnaJ homolog subfamily B member 5, DNAJB5, which also co-localized with TDP-43 pathology in diseased human motor cortex. DNAJB5 over-expression decreased TDP-43 aggregation in cell and cortical neuron cultures, and knockout of Dnajb5 exacerbated motor impairments caused by AAV-mediated cytoplasmic TDP-43 expression in mice. Together, these findings reveal molecular mechanisms at distinct stages of ALS and FTLD progression and suggest that protein folding factors could be protective in neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Agregado de Proteínas , Proteinopatías TDP-43 , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Neuronas/metabolismo , Proteómica , Proteinopatías TDP-43/metabolismo
2.
Eur J Neurosci ; 54(6): 6237-6255, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390052

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease commonly treated with riluzole, a small molecule that may act via modulation of glutamatergic neurotransmission. However, riluzole only modestly extends lifespan for people living with ALS, and its precise mechanisms of action remain unclear. Most ALS cases are characterised by accumulation of cytoplasmic TAR DNA binding protein of 43 kDa (TDP-43), and understanding the effects of riluzole in models that closely recapitulate TDP-43 pathology may provide insights for development of improved therapeutics. We therefore investigated the effects of riluzole in female transgenic mice that inducibly express nuclear localisation sequence (NLS)-deficient human TDP-43 in neurons (NEFH-tTA/tetO-hTDP-43ΔNLS, 'rNLS8', mice). Riluzole treatment from the first day of hTDP-43ΔNLS expression did not alter disease onset, weight loss or performance on multiple motor behavioural tasks. Riluzole treatment also did not alter TDP-43 protein levels, solubility or phosphorylation. Although we identified a significant decrease in GluA2 and GluA3 proteins in the cortex of rNLS8 mice, riluzole did not ameliorate this disease-associated molecular phenotype. Likewise, riluzole did not alter the disease-associated atrophy of hindlimb muscle in rNLS8 mice. Finally, riluzole treatment beginning after disease onset in rNLS8 mice similarly had no effect on progression of late-stage disease or animal survival. Together, we demonstrate specific glutamatergic receptor alterations and muscle fibre-type changes reminiscent of ALS in female rNLS8 mice, but riluzole had no effect on these or any other disease phenotypes. Future targeting of pathways related to accumulation of TDP-43 pathology may be needed to develop better treatments for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos , Riluzol/farmacología , Riluzol/uso terapéutico
3.
J Comp Neurol ; 529(4): 811-827, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32656805

RESUMEN

Polysialic acid (polySia), a homopolymer of α2,8-linked glycans, is a posttranslational modification on a few glycoproteins, most commonly in the brain, on the neural cell adhesion molecule. Most research in the adult central nervous system has focused on its expression in higher brain regions, where its distribution coincides with regions known to exhibit high levels of synaptic plasticity. In contrast, scant attention has been paid to the expression of polySia in the hindbrain. The main aims of the study were to examine the distribution of polySia immunoreactivity in the brainstem and thoracolumbar spinal cord, to compare the distribution of polySia revealed by two commercial antibodies commonly used for its investigation, and to compare labeling in the rat and mouse. We present a comprehensive atlas of polySia immunoreactivity: we report that polySia labeling is particularly dense in the dorsal tegmentum, medial vestibular nuclei and lateral parabrachial nucleus, and in brainstem regions associated with autonomic function, including the dorsal vagal complex, A5, rostral ventral medulla, A1, and midline raphe, as well as sympathetic preganglionic neurons in the spinal cord and central targets of primary sensory afferents (nucleus of the solitary tract, spinal trigeminal nucleus, and dorsal horn [DH]). Ultrastructural examination showed labeling was present predominantly on the plasma membrane/within the extracellular space/in or on astrocytes. Labeling throughout the brainstem and spinal cord were very similar for the two antibodies and was eliminated by the polySia-specific sialidase, Endo-NF. Similar patterns of distribution were found in rat and mouse brainstem with differences evident in DH.


Asunto(s)
Tronco Encefálico/química , Vértebras Lumbares , Ácidos Siálicos/análisis , Médula Espinal/química , Vértebras Torácicas , Animales , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Ácidos Siálicos/biosíntesis , Médula Espinal/citología , Médula Espinal/metabolismo
4.
J Neurol Neurosurg Psychiatry ; 91(2): 162-171, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31690696

RESUMEN

OBJECTIVE: Since the first report of CHCHD10 gene mutations in amyotrophiclateral sclerosis (ALS)/frontotemporaldementia (FTD) patients, genetic variation in CHCHD10 has been inconsistently linked to disease. A pathological assessment of the CHCHD10 protein in patient neuronal tissue also remains to be reported. We sought to characterise the genetic and pathological contribution of CHCHD10 to ALS/FTD in Australia. METHODS: Whole-exome and whole-genome sequencing data from 81 familial and 635 sporadic ALS, and 108 sporadic FTD cases, were assessed for genetic variation in CHCHD10. CHCHD10 protein expression was characterised by immunohistochemistry, immunofluorescence and western blotting in control, ALS and/or FTD postmortem tissues and further in a transgenic mouse model of TAR DNA-binding protein 43 (TDP-43) pathology. RESULTS: No causal, novel or disease-associated variants in CHCHD10 were identified in Australian ALS and/or FTD patients. In human brain and spinal cord tissues, CHCHD10 was specifically expressed in neurons. A significant decrease in CHCHD10 protein level was observed in ALS patient spinal cord and FTD patient frontal cortex. In a TDP-43 mouse model with a regulatable nuclear localisation signal (rNLS TDP-43 mouse), CHCHD10 protein levels were unaltered at disease onset and early in disease, but were significantly decreased in cortex in mid-stage disease. CONCLUSIONS: Genetic variation in CHCHD10 is not a common cause of ALS/FTD in Australia. However, we showed that in humans, CHCHD10 may play a neuron-specific role and a loss of CHCHD10 function may be linked to ALS and/or FTD. Our data from the rNLS TDP-43 transgenic mice suggest that a decrease in CHCHD10 levels is a late event in aberrant TDP-43-induced ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Proteínas Mitocondriales/genética , Anciano , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Animales , Australia , Western Blotting , Encéfalo/patología , Femenino , Técnica del Anticuerpo Fluorescente , Demencia Frontotemporal/inmunología , Demencia Frontotemporal/patología , Variación Genética/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Corteza Motora/patología , Médula Espinal/patología , Secuenciación del Exoma , Secuenciación Completa del Genoma
5.
Front Neurosci ; 13: 335, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031584

RESUMEN

During neurodegenerative disease, the multifunctional RNA-binding protein TDP-43 undergoes a vast array of post-translational modifications, including phosphorylation, acetylation, and cleavage. Many of these alterations may directly contribute to the pathogenesis of TDP-43 proteinopathies, which include most forms of amyotrophic lateral sclerosis (ALS) and approximately half of all frontotemporal dementia, pathologically identified as frontotemporal lobar degeneration (FTLD) with TDP-43 pathology. However, the relative contributions of the various TDP-43 post-translational modifications to disease remain unclear, and indeed some may be secondary epiphenomena rather than disease-causative. It is therefore critical to determine the involvement of each modification in disease processes to allow the design of targeted treatments. In particular, TDP-43 C-terminal fragments (CTFs) accumulate in the brains of people with ALS and FTLD and are therefore described as a neuropathological signature of these diseases. Remarkably, these TDP-43 CTFs are rarely observed in the spinal cord, even in ALS which involves dramatic degeneration of spinal motor neurons. Therefore, TDP-43 CTFs are not produced non-specifically in the course of all forms of TDP-43-related neurodegeneration, but rather variably arise due to additional factors influenced by regional heterogeneity in the central nervous system. In this review, we summarize how TDP-43 CTFs are generated and degraded by cells, and critique evidence from studies of TDP-43 CTF pathology in human disease tissues, as well as cell and animal models, to analyze the pathophysiological relevance of TDP-43 CTFs to ALS and FTLD. Numerous studies now indicate that, although TDP-43 CTFs are prevalent in ALS and FTLD brains, disease-related pathology is only variably reproduced in TDP-43 CTF cell culture models. Furthermore, TDP-43 CTF expression in both transgenic and viral-mediated in vivo models largely fails to induce motor or behavioral dysfunction reminiscent of human disease. We therefore conclude that although TDP-43 CTFs are a hallmark of TDP-43-related neurodegeneration in the brain, they are not a primary cause of ALS or FTLD.

6.
J Neurosci ; 37(27): 6558-6574, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28576943

RESUMEN

Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both in vitro and in vivo polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K+ currents and increasing intracellular Ca2+ Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here.SIGNIFICANCE STATEMENT All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of posttranslational modification, glycosylation. How these glycans influence brain function is only now beginning to be elucidated. The adult nucleus of the solitary tract has abundant polysialic acid (polySia) and is a major site of integration, receiving viscerosensory information which controls critical homeostatic functions. Our data reveal that polySia is a determinant of neuronal behavior and excitatory transmission in the nucleus of the solitary tract, regulating sympathetic nerve activity. polySia is abundantly expressed at distinct brain sites in adult, including major sensory nuclei, suggesting that sensory transmission may also be influenced via mechanisms described here. These findings hint at the importance of elucidating how other glycans influence neural function.


Asunto(s)
Vías Aferentes/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Ácidos Siálicos/metabolismo , Núcleo Solitario/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Distribución Tisular
7.
Mol Cell Endocrinol ; 418 Pt 1: 33-41, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26123585

RESUMEN

Imbalances in normal regulation of food intake can cause obesity and related disorders. Inadequate therapies for such disorders necessitate better understanding of mechanisms that regulate energy homeostasis. Pancreatic polypeptide (PP), a robust anorexigenic hormone, effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, leading to vagal stimulation that mediates complex actions via the neuropeptide Y4 receptor in arcuate nucleus of the hypothalamus, subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. Novel studies indicate affinity of PP for the relatively underexplored neuropeptide y6 receptor, mediating actions via the suprachiasmatic nucleus and pathways involving vasoactive intestinal polypeptide and insulin like growth factor 1. This review highlights detailed mechanisms by which PP mediates its actions on energy balance through various areas in the brain.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Homeostasis/fisiología , Hipotálamo/metabolismo , Polipéptido Pancreático/metabolismo , Animales , Humanos , Receptores de Neuropéptido Y/metabolismo
8.
Cell Metab ; 19(1): 58-72, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24411939

RESUMEN

Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition.


Asunto(s)
Metabolismo Energético , Homeostasis , Polipéptido Pancreático/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Núcleo Supraquiasmático/metabolismo , Adiposidad , Animales , Peso Corporal , Corticosterona/metabolismo , Dieta , Conducta Alimentaria , Fertilidad , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/patología , Receptores de la Hormona Gastrointestinal/deficiencia , Receptores de Neuropéptido Y/deficiencia , Núcleo Supraquiasmático/patología , Delgadez/sangre , Delgadez/patología , Péptido Intestinal Vasoactivo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...