Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 11: 659, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29230164

RESUMEN

Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3) is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS) to ~0.25-0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3-0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response.

2.
Opt Express ; 18(14): 14644-53, 2010 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-20639950

RESUMEN

We present in-vivo 3D human vocal fold images with polarization sensitive optical coherence tomography (PS-OCT). Characterizing the extent and location of vocal fold lesions provides useful information in guiding surgeons during phonomicrosurgery. Previous studies showed that PS-OCT imaging can distinguish vocal fold lesions from normal tissue, but these studies were limited to 2D cross-sectional imaging and were susceptible to sampling error. In-vivo 3D endoscopic imaging was performed by using a recently developed 2-axis MEMS scanning catheter and a spectral domain OCT (SD-OCT), running at 18.5 frames/s. Imaging was performed in the operating room with patients under general anesthesia and 3D images were acquired either by 2D scanning of the scanner on the sites of interest or by combining 1D scanning and manual sliding to capture whole length of the vocal fold. Vocal fold scar, polyps, nodules, papilloma and malignant lesions were imaged and characteristics of individual lesions were analyzed in terms of spatial distribution and variation of tissue structure and birefringence. The 3D large sectional PS-OCT imaging showed that the spatial extent of vocal fold lesions can be found non-invasively with good contrast from normal tissue.


Asunto(s)
Cateterismo/instrumentación , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Sistemas Microelectromecánicos/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Tomografía de Coherencia Óptica/métodos , Pliegues Vocales/patología , Humanos , Radiografía , Pliegues Vocales/diagnóstico por imagen
3.
Opt Express ; 15(26): 18130-40, 2007 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19551111

RESUMEN

A two-axis scanning catheter was developed for 3D endoscopic imaging with spectral domain optical coherence tomography (SD-OCT). The catheter incorporates a micro-mirror scanner implemented with microelectromechanical systems (MEMS) technology: the micro-mirror is mounted on a two-axis gimbal comprised of folded flexure hinges and is actuated by magnetic field. The scanner can run either statically in both axes or at the resonant frequency (>= 350Hz) for the fast axis. The assembled catheter has an outer diameter of 2.8 mm and a rigid part of 12 mm in length. Its scanning range is +/- 20 in optical angle in both axes with low voltages (1 approximately 3V), resulting in a scannable length of approximately 1 mm at the surface in both axes, even with the small catheter size. The catheter was incorporated with a multi-functional SD-OCT system for 3D endoscopic imaging. Both intensity and polarization-sensitive images could be acquired simultaneously at 18.5K axial scans/s. In vivo 3D images of human fingertips and oral cavity tissue are presented as a demonstration.


Asunto(s)
Cateterismo , Endoscopios , Magnetismo/instrumentación , Sistemas Microelectromecánicos/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA