Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Quant Plant Biol ; 4: e11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901685

RESUMEN

How to get a metre of DNA into a tiny space while preserving its functional characteristics? This question seems easy to pose, but the answer is far from being trivial. Facing this riddle, salvation came from technical improvements in microscopy and in situ hybridisation techniques applied to cytogenetics. Here, we would like to look into the past at one of these pure cytogenetics articles that makes a breakthrough in addressing this question in plant science. Our choice fell on the work published two decades ago by Fransz et al. (2002). Besides the elegant manner in which DNA probes were organised to bring into light the out-looping arrangement of interphase chromosomes in Arabidopsis thaliana nuclei, this article perfectly illustrates that painting is not reserved to the fine art. As for whether emotional expression prioritised by artists can sometimes hide behind scientific empirical evidence, there is only a small step to make to the general case.

2.
Plant J ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37067011

RESUMEN

The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.

4.
New Phytol ; 238(3): 1085-1100, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36779574

RESUMEN

Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3K27A ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3K27A variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.


Asunto(s)
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lisina/metabolismo , Lignina/metabolismo , Metilación , Epigénesis Genética , Genes del Desarrollo
5.
J Exp Bot ; 74(5): 1420-1431, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36515098

RESUMEN

Target of rapamycin (TOR) functions as a central sensory hub linking a wide range of external stimuli to gene expression. The mechanisms underlying stimulus-specific transcriptional reprogramming by TOR remain elusive. Here, we describe an in silico analysis in Arabidopsis demonstrating that TOR-repressed genes are associated with either bistable or silent chromatin states. Both states regulated by the TOR signaling pathway are associated with a high level of histone H3K27 trimethylation (H3K27me3) deposited by CURLY LEAF in a specific context with LIKE HETEROCHROMATIN PROTEIN1. The combination of the two epigenetic histone modifications H3K4me3 and H3K27me3 implicates a bistable feature that alternates between an 'on' and an 'off' state, allowing rapid transcriptional changes upon external stimuli. The chromatin remodeler SWI2/SNF2 ATPase BRAHMA activates TOR-repressed genes only at bistable chromatin domains to rapidly induce biotic stress responses. Here, we demonstrate both in silico and in vivo that TOR represses transcriptional stress responses through global maintenance of H3K27me3.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Fosfatidilinositol 3-Quinasas/genética
6.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419220

RESUMEN

An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.


Asunto(s)
Biotecnología/métodos , Cromatina/genética , Epigénesis Genética , Epigenómica/métodos , Edición Génica/métodos , Plantas/genética , Animales , Cromatina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica , Humanos
7.
Front Plant Sci ; 12: 804928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154196

RESUMEN

The maintenance of genetic information is important in eukaryotes notably through mechanisms occurring at the nuclear periphery where inner nuclear membrane proteins and nuclear pore-associated components are key factors regulating the DNA damage response (DDR). However, this aspect of DDR regulation is still poorly documented in plants. We addressed here how genomic stability is impaired in the gamma-tubulin complex component 3-interacting protein (gip1gip2) double mutants showing defective nuclear shaping. Using neutral comet assays for DNA double-strand breaks (DSBs) detection, we showed that GIP1 and GIP2 act redundantly to maintain genome stability. At the cellular level, γ-H2AX foci in gip1gip2 were more abundant and heterogeneous in their size compared to wild-type (WT) in root meristematic nuclei, indicative of constitutive DNA damage. This was linked to a constitutive activation of the DDR in the gip1gip2 mutant, with more emphasis on the homologous recombination (HR) repair pathway. In addition, we noticed the presence of numerous RAD51 foci which did not colocalize with γ-H2AX foci. The expression of GIP1-GFP in the double mutant rescued the cellular response to DNA damage, leading to the systematic colocalization of RAD51 and γ-H2AX foci. Interestingly, a significant proportion of RAD51 foci colocalized with GIP1-GFP at the nuclear periphery. Altogether, our data suggest that GIPs may partly contribute to the spatio-temporal recruitment of RAD51 at the nuclear periphery.

8.
Nucleic Acids Res ; 48(18): 10297-10312, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32941623

RESUMEN

Beyond their key role in translation, cytosolic transfer RNAs (tRNAs) are involved in a wide range of other biological processes. Nuclear tRNA genes (tDNAs) are transcribed by the RNA polymerase III (RNAP III) and cis-elements, trans-factors as well as genomic features are known to influence their expression. In Arabidopsis, besides a predominant population of dispersed tDNAs spread along the 5 chromosomes, some clustered tDNAs have been identified. Here, we demonstrate that these tDNA clusters are transcriptionally silent and that pathways involved in the maintenance of DNA methylation play a predominant role in their repression. Moreover, we show that clustered tDNAs exhibit repressive chromatin features whilst their dispersed counterparts contain permissive euchromatic marks. This work demonstrates that both genomic and epigenomic contexts are key players in the regulation of tDNAs transcription. The conservation of most of these regulatory processes suggests that this pioneering work in Arabidopsis can provide new insights into the regulation of RNA Pol III transcription in other organisms, including vertebrates.


Asunto(s)
Epigénesis Genética/genética , ARN Polimerasa III/genética , ARN de Transferencia/genética , Transcripción Genética , Arabidopsis/genética , Núcleo Celular/genética , Cromatina/genética , Silenciador del Gen , Familia de Multigenes/genética
9.
Front Plant Sci ; 11: 277, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218796

RESUMEN

Post-translational covalent modifications of histones play important roles in modulating chromatin structure and are involved in the control of multiple developmental processes in plants. Here we provide insight into the contribution of the histone lysine methyltransferase SET DOMAIN GROUP 8 (SDG8), implicated in histone H3 lysine 36 trimethylation (H3K36me3), in connection with RNA polymerase II (RNAPII) to enhance Arabidopsis immunity. We showed that even if the sdg8-1 loss-of-function mutant, defective in H3K36 methylation, displayed a higher sensitivity to different strains of the bacterial pathogen Pseudomonas syringae, effector-triggered immunity (ETI) still operated, but less efficiently than in the wild-type (WT) plants. In sdg8-1, the level of the plant defense hormone salicylic acid (SA) was abnormally high under resting conditions and was accumulated similarly to WT at the early stage of pathogen infection but quickly dropped down at later stages. Concomitantly, the transcription of several defense-related genes along the SA signaling pathway was inefficiently induced in the mutant. Remarkably, albeit the defense genes PATHOGENESIS-RELATED1 (PR1) and PR2 have retained responsiveness to exogenous SA, their inductions fade more rapidly in sdg8-1 than in WT. At chromatin, while global levels of histone methylations were found to be stable, local increases of H3K4 and H3K36 methylations as well as RNAPII loading were observed at some defense genes following SA-treatments in WT. In sdg8-1, the H3K36me3 increase was largely attenuated and also the increases of H3K4me3 and RNAPII were frequently compromised. Lastly, we demonstrated that SDG8 could physically interact with the RNAPII C-terminal Domain, providing a possible link between RNAPII loading and H3K36me3 deposition. Collectively, our results indicate that SDG8, through its histone methyltransferase activity and its physical coupling with RNAPII, participates in the strong transcriptional induction of some defense-related genes, in particular PR1 and PR2, to potentiate sustainable immunity during plant defense response to bacterial pathogen.

10.
New Phytol ; 221(2): 1101-1116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156703

RESUMEN

Covalent modifications of histones are essential to control a wide range of processes during development and adaptation to environmental changes. With the establishment of reference epigenomes, patterns of histone modifications were correlated with transcriptionally active or silenced genes. These patterns imply the need for the precise and dynamic coordination of different histone-modifying enzymes to control transcription at a given gene. Classically, the influence of these enzymes on gene expression is examined separately and their interplays rarely established. In Arabidopsis, HISTONE MONOUBIQUITINATION2 (HUB2) mediates H2B monoubiquitination (H2Bub1), whereas SET DOMAIN GROUP8 (SDG8) catalyzes H3 lysine 36 trimethylation (H3K36me3). In this work, we crossed hub2 with sdg8 mutants to elucidate their functional relationships. Despite similar phenotypic defects, sdg8 and hub2 mutations broadly affect genome transcription and plant growth and development synergistically. Also, whereas H3K4 methylation appears largely dependent on H2Bub1, H3K36me3 and H2Bub1 modifications mutually reinforce each other at some flowering time genes. In addition, SDG8 and HUB2 jointly antagonize the increase of the H3K27me3 repressive mark. Collectively, our data provide an important insight into the interplay between histone marks and highlight their interactive complexity in regulating chromatin landscape which might be necessary to fine-tune transcription and ensure plant developmental plasticity.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Código de Histonas , Histonas/genética , Lisina/metabolismo , Metilación , Mutación , Motivos de Nucleótidos , Transcripción Genética , Ubiquitinación
11.
Plant Physiol ; 172(3): 1746-1759, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27630184

RESUMEN

Histone H2A monoubiquitination (H2Aub1), catalyzed by Polycomb-Repressive Complex1 (PRC1), is a key epigenetic mark in Polycomb silencing. However, little is known about how H2Aub1 is read to exert downstream physiological functions. The animal ZUOTIN-RELATED FACTOR1 (ZRF1) has been reported to bind H2Aub1 to promote or repress the expression of varied target genes. Here, we show that the Arabidopsis (Arabidopsis thaliana) ZRF1 homologs, AtZRF1a and AtZRF1b, are key regulators of multiple processes during plant growth and development. Loss of function of both AtZRF1a and AtZRF1b in atzrf1a atzrf1b mutants causes seed germination delay, small plant size, abnormal meristem activity, abnormal flower development, as well as gametophyte transmission and embryogenesis defects. Some of these defects overlap with those described previously in the PRC1-defective mutants atbmi1a atbmi1b and atring1a atring1b, but others are specific to atzrf1a atzrf1b In line with this, 4,519 genes (representing more than 14% of all genes) within the Arabidopsis genome are found differentially expressed in atzrf1a atzrf1b seedlings, and among them, 114 genes are commonly up-regulated in atring1a atring1b and atbmi1a atbmi1b Finally, we show that in both atzrf1a atzrf1b and atbmi1a atbmi1b seedlings, the seed developmental genes ABSCISIC ACID INSENSITIVE3, CRUCIFERIN3, and CHOTTO1 are derepressed, in association with the reduced levels of H2Aub1 and histone H3 lysine-27 trimethylation (H3K27me3). Collectively, our results indicate that AtZRF1a/b play both PRC1-related and PRC1-unrelated functions in regulating plant growth and development and that AtZRF1a/b promote H2Aub1 and H3K27me3 deposition in gene suppression. Our work provides novel insight into the mechanisms of function of this family of evolutionarily conserved chromatin regulators.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen , Glucosiltransferasas/metabolismo , Desarrollo de la Planta , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , ADN Bacteriano/genética , Flores/embriología , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Histonas/metabolismo , Meristema/embriología , Meristema/metabolismo , Metilación , Mutagénesis Insercional/genética , Mutación/genética , Desarrollo de la Planta/genética , Hojas de la Planta/embriología , Hojas de la Planta/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Supresión Genética , Transcripción Genética
12.
Epigenetics ; 11(8): 625-34, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27184433

RESUMEN

In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meeting to remember. In this article we summarize some of the new insights into chromatin, epigenetics, and epigenomics research and highlight nascent ideas and emerging concepts in this exciting area of research.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Genoma de Planta , Carácter Cuantitativo Heredable
13.
Front Plant Sci ; 7: 118, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26904080

RESUMEN

Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm.

14.
Biochim Biophys Acta ; 1859(4): 581-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26854085

RESUMEN

Histone methylations play fundamental roles in epigenetic regulation of transcription in many eukaryotes. In the model plant Arabidopsis thaliana as in human, a same histone lysine residue (e.g. H3K4 or H3K36) can be a potential target substrate for various different histone lysine methyltransferases (HKMTs). Using powerful genetic tool in Arabidopsis, we here investigate the interplay between two close HKMT homologues, SET DOMAIN GROUP 8 (SDG8) and SDG26, in regulating transcription and plant growth and development. We show that the sdg8 mutation is epistatic to the sdg26 one, leading to a sdg8 sdg26 double mutant exhibiting defects similar to sdg8 (reduced level of H3K36me3, increased level of H3K36me1, reduced plant body size, early flowering associated with reduced expression of FLC and MAFs and increased expression of FT and SOC1), but opposite to sdg26 (increased rosette size, late flowering associated with increased FLC and MAF5 expression and reduced FT and SOC1 expression). In parallel to the finding of the epistasis of SDG8, our study also unravels novel functions of SDG26 in H3K36me1 deposition and in the interplay with SDG8 in regulating the genome-wide gene expression. The implication of various HKMTs in establishing different forms of histone methylation and gene-context-specific chromatin modifications likely provides an advantageous mechanism for the regulation of transcription to cope with complex and plastic growth and developmental programs in plants and possibly also in other organisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , N-Metiltransferasa de Histona-Lisina/genética , Transcripción Genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/biosíntesis , Epigénesis Genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Humanos , Mutación , Desarrollo de la Planta/genética , Proteínas Represoras/biosíntesis
15.
Biol Aujourdhui ; 210(4): 269-282, 2016.
Artículo en Francés | MEDLINE | ID: mdl-28327284

RESUMEN

In the nucleus of eukaryotic cells, the chromatin states dictated by the different combinations of histone post-translational modifications, such as the methylation of lysine residues, are an integral part of the multitude of epigenomes involved in the fine tuning of all genome functions, and in particular transcription. Over the last decade, an increasing number of factors have been identified as regulators involved in the establishment, reading or erasure of histone methylations. Their characterization in model organisms such as Arabidopsis has thus unraveled their fundamental roles in the control and regulation of essential developmental processes such as the floral transition, cell differentiation, gametogenesis, and/or the response/adaptation of plants to environmental stresses. In this review, we will focus on the methylation of histones functioning as a mark of activate transcription and we will try to highlight, based on recent findings, the more or less direct links between this mark and gene expression. Thus, we will discuss the different mechanisms allowing the dynamics and the integration of the chromatin states resulting from the different histone methylations in connection with the transcriptional machinery of the RNA polymerase II.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Transcripción Genética/fisiología , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , Epigénesis Genética/fisiología , Histona Metiltransferasas , Humanos , Metilación , Oryza/genética , Oryza/metabolismo , Procesamiento Proteico-Postraduccional
16.
Genom Data ; 4: 143-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26484201

RESUMEN

Histone lysine (K) methylation is a type of epigenetic modification involved in regulation of DNA-based processes, including transcription, replication and repair. It can either activate or repress transcription depending on the histone K residue on which methylation occurs and on chromatin context of additional other modifications. In both animals and plants, methylation on one histone K residue can be deposited by several different histone methyltransferases and vice versa removed by different histone demethylases. It is of great interest to know which histone enzyme regulates which genes in the genome. Here we describe in details the contents and quality controls for the gene expression data of Arabidopsis mutants deprived in distinct histone methyltransferases (SDG26, SDG25, ATX1, CLF) and histone demethylases (LDL1, LDL2), in association with the study recently published by Berr and colleagues in The Plant Journal (Berr et al., 2015). The microarray dataset has been deposited in Gene Expression Omnibus with accession number GSE55167.

17.
Proc Natl Acad Sci U S A ; 112(28): 8656-60, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124146

RESUMEN

Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved γ-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation. We show that GIPs form a complex with CENH3 in cycling cells. GIP depletion in the gip1gip2 knockdown mutant leads to a decreased CENH3 level at centromeres, despite a higher level of Mis18BP1/KNL2 present at both centromeric and ectopic sites. We thus postulate that GIPs are required to ensure CENH3 deposition and/or maintenance at centromeres. In addition, the recruitment at the centromere of other proteins such as the CENP-C kinetochore component and the cohesin subunit SMC3 is impaired in gip1gip2. These defects in centromere architecture result in aneuploidy due to severely altered centromeric cohesion. Altogether, we ascribe a central function to GIPs for the proper recruitment and/or stabilization of centromeric proteins essential in the specification of the centromere identity, as well as for centromeric cohesion in somatic cells.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas Portadoras/fisiología , Centrómero , Arabidopsis/citología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Ciclo Celular , Genes de Plantas , Histonas/metabolismo , Unión Proteica
18.
Plant J ; 81(2): 316-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25409787

RESUMEN

Histone methylation is a major component in numerous processes such as determination of flowering time, which is fine-tuned by multiple genetic pathways that integrate both endogenous and environmental signals. Previous studies identified SET DOMAIN GROUP 26 (SDG26) as a histone methyltransferase involved in the activation of flowering, as loss of function of SDG26 caused a late-flowering phenotype in Arabidopsis thaliana. However, the SDG26 function and the underlying molecular mechanism remain largely unknown. In this study, we undertook a genetic analysis by combining the sdg26 mutant with mutants of other histone methylation enzymes, including the methyltransferase mutants Arabidopsis trithorax1 (atx1), sdg25 and curly leaf (clf), as well as the demethylase double mutant lsd1-like1 lsd1-like2 (ldl1 ldl2). We found that the early-flowering mutants sdg25, atx1 and clf interact antagonistically with the late-flowering mutant sdg26, whereas the late-flowering mutant ldl1 ldl2 interacts synergistically with sdg26. Based on microarray analysis, we observed weak overlaps in the genes that were differentially expressed between sdg26 and the other mutants. Our analyses of the chromatin of flowering genes revealed that the SDG26 protein binds at the key flowering integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1/AGAMOUS-LIKE 20 (SOC1/AGL20), and is required for histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) at this locus. Together, our results indicate that SDG26 promotes flowering time through a distinctive genetic pathway, and that loss of function of SDG26 causes a decrease in H3K4me3 and H3K36me3 at its target gene SOC1, leading to repression of this gene and the late-flowering phenotype.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
19.
New Phytol ; 201(1): 312-322, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24102415

RESUMEN

Previous studies in Arabidopsis thaliana have identified several histone methylation enzymes, including Arabidopsis trithorax1 (ATX1)/set domain group 27 (SDG27), ATX2/SDG30, LSD1-LIKE1 (LDL1), LDL2, SDG8, SDG25, and curly leaf (CLF)/SDG1, as regulators of the key flowering repressor flowering locus C (FLC) and the florigen flowering locus T (FT). However, the combinatorial functions of these enzymes remain largely uninvestigated. Here, we investigated functional interplays of different histone methylation enzymes by studying higher order combinations of their corresponding gene mutants. We showed that H3K4me2/me3 and H3K36me3 depositions occur largely independently and that SDG8-mediated H3K36me3 overrides ATX1/ATX2-mediated H3K4me2/me3 or LDL1/LDL2-mediated H3K4 demethylation in regulating FLC expression and flowering time. By contrast, a reciprocal inhibition was observed between deposition of the active mark H3K4me2/me3 and/or H3K36me3 and deposition of the repressive mark H3K27me3 at both FLC and FT chromatin; and the double mutants sdg8 clf and sdg25 clf displayed enhanced early-flowering phenotypes of the respective single mutants. Collectively, our results provide important insights into the interactions of different types of histone methylation and enzymes in the regulation of FLC and FT expression in flowering time control.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Metilación , Metiltransferasas/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Expresión Génica , Genes de Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Metiltransferasas/metabolismo , Mutación , Fenotipo , Desarrollo de la Planta/genética
20.
Chromosoma ; 121(4): 369-87, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22476443

RESUMEN

The spatial chromatin organisation and molecular interactions within and between chromatin domains and chromosome territories (CTs) are essential for fundamental processes such as replication, transcription and DNA repair via homologous recombination. To analyse the distribution and interaction of whole CTs, centromeres, (sub)telomeres and ~100-kb interstitial chromatin segments in endopolyploid nuclei, specific FISH probes from Arabidopsis thaliana were applied to 2-64C differentiated leaf nuclei. Whereas CTs occupy a distinct and defined volume of the nucleus and do not obviously intermingle with each other in 2-64C nuclei, ~100-kb sister chromatin segments within these CTs become more non-cohesive with increasing endopolyploidy. Centromeres, preferentially located at the nuclear periphery, may show ring- or half-moon like shapes in 2C and 4C nuclei. Sister centromeres tend to associate up to the 8C level. From 16C nuclei on, they become progressively separated. The higher the polyploidy level gets, the more separate chromatids are present. Due to sister chromatid separation in highly endopolyploid nuclei, the centromeric histone variant CENH3, the 180-bp centromeric repeats and pericentromeric heterochromatin form distinct subdomains at adjacent but not intermingling positions. The (sub)telomeres are frequently associated with each other and with the nucleolus and less often with centromeres. The extent of chromatid separation and of chromatin decondensation at subtelomeric chromatin segments varies between chromosome arms. A mainly random distribution and similar shapes of CTs even at higher ploidy levels indicate that in general no substantial CT reorganisation occurs during endopolyploidisation. Non-cohesive sister chromatid regions at chromosome arms and at the (peri)centromere are accompanied by a less dense chromatin conformation in highly endopolyploid nuclei. We discuss the possible function of this conformation in comparison to transcriptionally active regions at insect polytene chromosomes.


Asunto(s)
Arabidopsis/genética , Núcleo Celular/genética , Cromatina/genética , Interfase/genética , Núcleo Celular/química , Centrómero/química , Centrómero/genética , Cromatina/química , Cromosomas de las Plantas/química , Cromosomas de las Plantas/genética , Orden Génico , Procesamiento de Imagen Asistido por Computador , Poliploidía , Telómero/química , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...