Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612443

RESUMEN

Acute myeloid leukemia (AML) is a complex hematologic malignancy with high morbidity and mortality. Nucleophosmin 1 (NPM1) mutations occur in approximately 30% of AML cases, and NPM1-mutated AML is classified as a distinct entity. NPM1-mutated AML patients without additional genetic abnormalities have a favorable prognosis. Despite this, 30-50% of them experience relapse. This study aimed to investigate the potential of total RNAseq in improving the characterization of NPM1-mutated AML patients. We explored genetic variations independently of myeloid stratification, revealing a complex molecular scenario. We showed that total RNAseq enables the uncovering of different genetic alterations and clonal subtypes, allowing for a comprehensive evaluation of the real expression of exome transcripts in leukemic clones and the identification of aberrant fusion transcripts. This characterization may enhance understanding and guide improved treatment strategies for NPM1mut AML patients, contributing to better outcomes. Our findings underscore the complexity of NPM1-mutated AML, supporting the incorporation of advanced technologies for precise risk stratification and personalized therapeutic strategies. The study provides a foundation for future investigations into the clinical implications of identified genetic variations and highlights the importance of evolving diagnostic approaches in leukemia management.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Células Clonales , Exoma , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética
3.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658552

RESUMEN

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias de la Próstata , Análisis de la Célula Individual , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Aneuploidia , Próstata/patología , Próstata/metabolismo , Células Clonales , Diploidia , Anciano
4.
J Pharm Biomed Anal ; 244: 116113, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554554

RESUMEN

OBJECTIVES: Urinary sex hormones are investigated as potential biomarkers for the early detection of breast cancer, aiming to evaluate their relevance and applicability, in combination with supervised machine-learning data analysis, toward the ultimate goal of extensive screening. METHODS: Sex hormones were determined on urine samples collected from 250 post-menopausal women (65 healthy - 185 with breast cancer, recruited among the clinical patients of Candiolo Cancer Institute FPO-IRCCS (Torino, Italy). Two analytical procedures based on UHPLC-MS/HRMS were developed and comprehensively validated to quantify 20 free and conjugated sex hormones from urine samples. The quantitative data were processed by seven machine learning algorithms. The efficiency of the resulting models was compared. RESULTS: Among the tested models aimed to relate urinary estrogen and androgen levels and the occurrence of breast cancer, Random Forest (RF) proved to underscore all the other supervised classification approaches, including Partial Least Squares - Discriminant Analysis (PLS-DA), in terms of effectiveness and robustness. The final optimized model built on only five biomarkers (testosterone-sulphate, alpha-estradiol, 4-methoxyestradiol, DHEA-sulphate, and epitestosterone-sulphate) achieved an approximate 98% diagnostic accuracy on replicated validation sets. To balance the less-represented population of healthy women, a Synthetic Minority Oversampling TEchnique (SMOTE) data oversampling approach was applied. CONCLUSIONS: By means of tunable hyperparameters optimization, the RF algorithm showed great potential for early breast cancer detection, as it provides clear biomarkers ranking and their relative efficiency, allowing to ground the final diagnostic model on a restricted selection five steroid biomarkers only, as desirable for noninvasive tests with wide screening purposes.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Detección Precoz del Cáncer , Humanos , Femenino , Neoplasias de la Mama/orina , Neoplasias de la Mama/diagnóstico , Biomarcadores de Tumor/orina , Detección Precoz del Cáncer/métodos , Persona de Mediana Edad , Anciano , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Aprendizaje Automático Supervisado , Hormonas Esteroides Gonadales/orina , Algoritmos , Análisis Discriminante , Aprendizaje Automático , Posmenopausia/orina , Análisis de los Mínimos Cuadrados , Italia , Bosques Aleatorios
5.
Nat Commun ; 15(1): 1768, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38409079

RESUMEN

Extrachromosomal circular DNAs (eccDNAs) have emerged as important intra-cellular mobile genetic elements that affect gene copy number and exert in trans regulatory roles within the cell nucleus. Here, we describe scCircle-seq, a method for profiling eccDNAs and unraveling their diversity and complexity in single cells. We implement and validate scCircle-seq in normal and cancer cell lines, demonstrating that most eccDNAs vary largely between cells and are stochastically inherited during cell division, although their genomic landscape is cell type-specific and can be used to accurately cluster cells of the same origin. eccDNAs are preferentially produced from chromatin regions enriched in H3K9me3 and H3K27me3 histone marks and are induced during replication stress conditions. Concomitant sequencing of eccDNAs and RNA from the same cell uncovers the absence of correlation between eccDNA copy number and gene expression levels, except for a few oncogenes, including MYC, contained within a large eccDNA in colorectal cancer cells. Lastly, we apply scCircle-seq to one prostate cancer and two breast cancer specimens, revealing cancer-specific eccDNA landscapes and a higher propensity of eccDNAs to form in amplified genomic regions. scCircle-seq is a scalable tool that can be used to dissect the complexity of eccDNAs across different cell and tissue types, and further expands the potential of eccDNAs for cancer diagnostics.


Asunto(s)
ADN Circular , ADN , Masculino , Humanos , ADN Circular/genética , Cromosomas , Línea Celular , Oncogenes
6.
Lab Invest ; 104(1): 100280, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345263

RESUMEN

Formalin-fixed paraffin-embedded (FFPE) samples represent the cornerstone of tissue-based analysis in precision medicine. Targeted next-generation sequencing panels are routinely used to analyze a limited number of genes to guide treatment decision-making for advanced-stage patients. The number and complexity of genetic alterations to be investigated are rapidly growing; in several instances, a comprehensive genomic profiling analysis is needed. The poor quality of genetic material extracted from FFPE samples may impact the feasibility/reliability of sequencing data. We sampled 9 colorectal cancers to allow 4 parallel fixations: (1) neutral buffered formalin (NBF), (2) acid-deprived formalin fixation (ADF), (3) precooled ADF (coldADF), and (4) glyoxal acid free (GAF). DNA extraction, fragmentation analysis, and sequencing by 2 large next-generation sequencing panels (OCAv3 and TSO500) followed. We comprehensively analyzed library and sequencing quality controls and the quality of sequencing results. Libraries from coldADF samples showed significantly longer reads than the others with both panels. ADF-derived and coldADF-derived libraries showed the lowest level of noise and the highest levels of uniformity with the OCAv3 panel, followed by GAF and NBF samples. The data uniformity was confirmed by the TSO500 results, which also highlighted the best performance in terms of the total region sequenced for the ADF and coldADF samples. NBF samples had a significantly smaller region sequenced and displayed a significantly lower number of evaluable microsatellite loci and a significant increase in single-nucleotide variations compared with other protocols. Mutational signature 1 (aging and FFPE artifact related) showed the highest (37%) and lowest (17%) values in the NBF and coldADF samples, respectively. Most of the identified genetic alterations were shared by all samples in each lesion. Five genes showed a different mutational status across samples and/or panels: 4 discordant results involved NBF samples. In conclusion, acid-deprived fixatives (GAF and ADF) guarantee the highest DNA preservation/sequencing performance, thus allowing more complex molecular profiling of tissue samples.


Asunto(s)
Artefactos , ADN , Humanos , Fijación del Tejido/métodos , Reproducibilidad de los Resultados , ADN/genética , ADN/análisis , Formaldehído , Genómica , Adhesión en Parafina , Secuenciación de Nucleótidos de Alto Rendimiento
7.
Expert Rev Mol Diagn ; 24(1-2): 49-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38334382

RESUMEN

INTRODUCTION: Over the past two years, the scientific community has witnessed an exponential growth in research focused on identifying prognostic biomarkers for melanoma, both in pre-clinical and clinical settings. This surge in studies reflects the need of developing effective prognostic indicators in the field of melanoma. AREAS COVERED: The aim of this work is to review the scientific literature on the most recent findings on the development or validation of prognostic biomarkers in melanoma, in the attempt of providing both clinicians and researchers with an updated broad synopsis of prognostic biomarkers in cutaneous melanoma. EXPERT OPINION: While the field of prognostic biomarkers in melanoma appears promising, there are several complexities and limitations to address. The interdependence of clinical, histological, and molecular features requires accurate classification of different biomarker families. Correlation does not imply causation, and adjustments for confounding factors are often overlooked. In this scenario, large-scale studies based on high-quality clinical trial data can provide more reliable evidence. It is essential to avoid oversimplification by focusing on a single biomarker, as the interactions among multiple factors contribute to define the disease course and patient's outcome. Furthermore, implementing well-supported evidence in real-life settings can help advance prognostic biomarker research in melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Pronóstico , Biomarcadores de Tumor , Proteínas Proto-Oncogénicas B-raf , Biomarcadores
8.
J Transl Med ; 22(1): 29, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184610

RESUMEN

BACKGROUND: The current therapeutic algorithm for Advanced Stage Melanoma comprises of alternating lines of Targeted and Immuno-therapy, mostly via Immune-Checkpoint blockade. While Comprehensive Genomic Profiling of solid tumours has been approved as a companion diagnostic, still no approved predictive biomarkers are available for Melanoma aside from BRAF mutations and the controversial Tumor Mutational Burden. This study presents the results of a Multi-Centre Observational Clinical Trial of Comprehensive Genomic Profiling on Target and Immuno-therapy treated advanced Melanoma. METHODS: 82 samples, collected from 7 Italian Cancer Centres of FFPE-archived Metastatic Melanoma and matched blood were sequenced via a custom-made 184-gene amplicon-based NGS panel. Sequencing and bioinformatics analysis was performed at a central hub. Primary analysis was carried out via the Ion Reporter framework. Secondary analysis and Machine Learning modelling comprising of uni and multivariate, COX/Lasso combination, and Random Forest, was implemented via custom R/Python scripting. RESULTS: The genomics landscape of the ACC-mela cohort is comparable at the somatic level for Single Nucleotide Variants and INDELs aside a few gene targets. All the clinically relevant targets such as BRAF and NRAS have a comparable distribution thus suggesting the value of larger scale sequencing in melanoma. No comparability is reached at the CNV level due to biotechnological biases and cohort numerosity. Tumour Mutational Burden is slightly higher in median for Complete Responders but fails to achieve statistical significance in Kaplan-Meier survival analysis via several thresholding strategies. Mutations on PDGFRB, NOTCH3 and RET were shown to have a positive effect on Immune-checkpoint treatment Overall and Disease-Free Survival, while variants in NOTCH4 were found to be detrimental for both endpoints. CONCLUSIONS: The results presented in this study show the value and the challenge of a genomics-driven network trial. The data can be also a valuable resource as a validation cohort for Immunotherapy and Target therapy genomic biomarker research.


Asunto(s)
Detección Precoz del Cáncer , Melanoma , Humanos , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf , Genómica , Italia
9.
J Exp Clin Cancer Res ; 42(1): 310, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993874

RESUMEN

BACKGROUND: Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40-60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. METHODS: In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. RESULTS: We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. CONCLUSIONS: In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors.


Asunto(s)
Melanoma , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Citocinas , Receptores Quiméricos de Antígenos/genética , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia , Melanoma/genética , Melanoma/terapia , Inmunoterapia , Linfocitos/patología , Proteínas de la Membrana , Proteoglicanos Tipo Condroitín Sulfato
10.
Sci Rep ; 13(1): 12040, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491482

RESUMEN

Mammographic breast cancer screening is effective in reducing breast cancer mortality. Nevertheless, several limitations are known. Therefore, developing an alternative or complementary non-invasive tool capable of increasing the accuracy of the screening process is highly desirable. The objective of this study was to identify circulating microRNA (miRs) ratios associated with BC in women attending mammography screening. A nested case-control study was conducted within the ANDROMEDA cohort (women of age 46-67 attending BC screening). Pre-diagnostic plasma samples, information on life-styles and common BC risk factors were collected. Small-RNA sequencing was carried out on plasma samples from 65 cases and 66 controls. miR ratios associated with BC were selected by two-sample Wilcoxon test and lasso logistic regression. Subsequent assessment by RT-qPCR of the miRs contained in the selected miR ratios was carried out as a platform validation. To identify the most promising biomarkers, penalised logistic regression was further applied to candidate miR ratios alone, or in combination with non-molecular factors. Small-RNA sequencing yielded 20 candidate miR ratios associated with BC, which were further assessed by RT-qPCR. In the resulting model, penalised logistic regression selected seven miR ratios (miR-199a-3p_let-7a-5p, miR-26b-5p_miR-142-5p, let-7b-5p_miR-19b-3p, miR-101-3p_miR-19b-3p, miR-93-5p_miR-19b-3p, let-7a-5p_miR-22-3p and miR-21-5p_miR-23a-3p), together with body mass index (BMI), menopausal status (MS), the interaction term BMI * MS, life-style score and breast density. The ROC AUC of the model was 0.79 with a sensitivity and specificity of 71.9% and 76.6%, respectively. We identified biomarkers potentially useful for BC screening measured through a widespread and low-cost technique. This is the first study reporting circulating miRs for BC detection in a screening setting. Validation in a wider sample is warranted.Trial registration: The Andromeda prospective cohort study protocol was retrospectively registered on 27-11-2015 (NCT02618538).


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , MicroARNs , Humanos , Femenino , Persona de Mediana Edad , Anciano , MicroARNs/genética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Estudios Prospectivos , Biomarcadores de Tumor/genética , Detección Precoz del Cáncer , Mamografía
11.
Cancer Res ; 83(10): 1699-1710, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37129948

RESUMEN

Despite negative results of clinical trials conducted on the overall population of patients with gastric cancer, PARP inhibitor (PARPi) therapeutic strategy still might represent a window of opportunity for a subpopulation of patients with gastric cancer. An estimated 7% to 12% of gastric cancers exhibit a mutational signature associated with homologous recombination (HR) failure, suggesting that these patients could potentially benefit from PARPis. To analyze responsiveness of gastric cancer to PARPi, we exploited a gastroesophageal adenocarcinoma (GEA) platform of patient-derived xenografts (PDX) and PDX-derived primary cells and selected 10 PDXs with loss-of-function mutations in HR pathway genes. Cell viability assays and preclinical trials showed that olaparib treatment was effective in PDXs harboring BRCA2 germline mutations and somatic inactivation of the second allele. Olaparib responsive tumors were sensitive to oxaliplatin as well. Evaluation of HR deficiency (HRD) and mutational signatures efficiently stratified responder and nonresponder PDXs. A retrospective analysis on 57 patients with GEA showed that BRCA2 inactivating variants were associated with longer progression-free survival upon platinum-based regimens. Five of 7 patients with BRCA2 germline mutations carried the p.K3326* variant, classified as "benign." However, familial history of cancer, the absence of RAD51 foci in tumor cells, and a high HRD score suggest a deleterious effect of this mutation in gastric cancer. In conclusion, PARPis could represent an effective therapeutic option for BRCA2-mutated and/or high HRD score patients with GEA, including patients with familial intestinal gastric cancer. SIGNIFICANCE: PARP inhibition is a potential strategy for treating patients with gastric cancer with mutated BRCA2 or homologous repair deficiency, including patients with familial intestinal gastric cancer, for whom BRCA2 germline testing should be recommended.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Neoplasias Gástricas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Mutación de Línea Germinal , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Estudios Retrospectivos , Proteína BRCA1/genética , Proteína BRCA2/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico
12.
Front Oncol ; 13: 1130852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816936

RESUMEN

High-grade mucinous colorectal cancer (HGM CRC) is particularly aggressive, prone to metastasis and treatment resistance, frequently accompanied by "signet ring" cancer cells. A sizeable fraction of HGM CRCs (20-40%) arises in the context of the Lynch Syndrome, an autosomal hereditary syndrome that predisposes to microsatellite instable (MSI) CRC. Development of patient-derived preclinical models for this challenging subtype of colorectal cancer represents an unmet need in oncology. We describe here successful propagation of preclinical models from a case of early-onset, MSI-positive metastatic colorectal cancer in a male Lynch syndrome patient, refractory to standard care (FOLFOX6, FOLFIRI-Panitumumab) and, surprisingly, also to immunotherapy. Surgical material from a debulking operation was implanted in NOD/SCID mice, successfully yielding one patient-derived xenograft (PDX). PDX explants were subsequently used to generate 2D and 3D cell cultures. Histologically, all models resembled the tumor of origin, displaying a high-grade mucinous phenotype with signet ring cells. For preclinical exploration of alternative treatments, in light of recent findings, we considered inhibition of the proteasome by bortezomib and of the related NEDD8 pathway by pevonedistat. Indeed, sensitivity to bortezomib was observed in mucinous adenocarcinoma of the lung, and we previously found that HGM CRC is preferentially sensitive to pevonedistat in models with low or absent expression of cadherin 17 (CDH17), a differentiation marker. We therefore performed IHC on the tumor and models, and observed no CDH17 expression, suggesting sensitivity to pevonedistat. Both bortezomib and pevonedistat showed strong activity on 2D cells at 72 hours and on 3D organoids at 7 days, thus providing valid options for in vivo testing. Accordingly, three PDX cohorts were treated for four weeks, respectively with vehicle, bortezomib and pevonedistat. Both drugs significantly reduced tumor growth, as compared to the vehicle group. Interestingly, while bortezomib was more effective in vitro, pevonedistat was more effective in vivo. Drug efficacy was further substantiated by a reduction of cellularity and of Ki67-positive cells in the treated tumors. These results highlight proteasome and NEDD8 inhibition as potentially effective therapeutic approaches against Lynch syndrome-associated HGM CRC, also when the disease is refractory to all available treatment options.

13.
Mod Pathol ; 36(2): 100012, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36853785

RESUMEN

Mismatch repair (MMR) protein expression in colorectal cancer (CRC) cells is usually homogeneously retained or lost. Rare lesions may show a heterogeneous pattern of MMR protein expression. We evaluated MMR protein expression (MLH1, MSH2, MSH6, and PMS2) in 200 CRCs, identifying 3 groups with proficient MMR protein expression (MMRp), deficient MMR protein expression (MMRd), and heterogeneous MMR protein expression (MMRh). MMRh tumors were microdissected on the basis of the expression of the heterogeneous marker. DNA was extracted and subjected to targeted sequencing. RNA was purified from bulk tumors of all MMRh cases and in a control series of 15 MMRp and 10 MMRd CRCs and analyzed using the PanCancer IO 360 Panel (NanoString Technologies). Twenty-nine of the 200 cases (14.5%) were MMRd. Nine cases (4.5%) showed a heterogeneous pattern of MMR expression, with 6 tumors harboring concomitant loss of one of the other MMR proteins, thus featuring areas with double loss at immunohistochemistry (IHC) testing (MMRh double-loss cases). Four of the 6 MMRh double-loss cases were suitable for a separate sequence variant analysis of IHC double-negative and IHC single-negative components of the tumor. In all lesions, both components exhibited a high tumor mutation burden (TMB). Nevertheless, a significant increase in TMB in the double-negative components was observed (mean TMB: negative, 70 mut/Mb vs positive, 59 mut/Mb) because of a higher number of subclonal variants compared with the other component. Comparative gene expression analyses among MMRd, MMRp, and MMRh CRCs highlighted differential gene expression patterns and an increased number of tumor-infiltrating lymphocytes in MMRh lesions, which is also characterized by a substantial population of exhausted CD8+ lymphocytes. We describe a unique subgroup of CRCs showing heterogeneous expression of MMR proteins in a background of concomitant loss of one of the other markers.


Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Humanos , Microambiente Tumoral , Perfilación de la Expresión Génica , Linfocitos Infiltrantes de Tumor , Neoplasias Colorrectales/genética
15.
Cancer Cell ; 41(1): 196-209.e5, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36584674

RESUMEN

Patients affected by colorectal cancer (CRC) with DNA mismatch repair deficiency (MMRd), often respond to immune checkpoint blockade therapies, while those with mismatch repair-proficient (MMRp) tumors generally do not. Interestingly, a subset of MMRp CRCs contains variable fractions of MMRd cells, but it is unknown how their presence impacts immune surveillance. We asked whether modulation of the MMRd fraction in MMR heterogeneous tumors acts as an endogenous cancer vaccine by promoting immune surveillance. To test this hypothesis, we use isogenic MMRp (Mlh1+/+) and MMRd (Mlh1-/-) mouse CRC cells. MMRp/MMRd cells mixed at different ratios are injected in immunocompetent mice and tumor rejection is observed when at least 50% of cells are MMRd. To enrich the MMRd fraction, MMRp/MMRd tumors are treated with 6-thioguanine, which leads to tumor rejection. These results suggest that genetic and pharmacological modulation of the DNA mismatch repair machinery potentiate the immunogenicity of MMR heterogeneous tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Animales , Ratones , Reparación de la Incompatibilidad de ADN/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Inestabilidad de Microsatélites
16.
Virchows Arch ; 482(3): 463-475, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36346458

RESUMEN

The aim of this study is to envisage a streamlined pathological workup to rule out CUPs in patients presenting with MUOs. Sixty-four MUOs were classified using standard histopathology. Clinical data, immunocytochemical markers, and results of molecular analysis were recorded. MUOs were histologically subdivided in clear-cut carcinomas (40 adenocarcinomas, 11 squamous, and 3 neuroendocrine carcinomas) and unclear-carcinoma features (5 undifferentiated and 5 sarcomatoid tumors). Cytohistology of 7/40 adenocarcinomas suggested an early metastatic cancer per se. In 33/40 adenocarcinomas, CK7/CK20 expression pattern, gender, and metastasis sites influenced tissue-specific marker selection. In 23/40 adenocarcinomas, a "putative-immunophenotype" of tissue of origin addressed clinical-diagnostic examinations, identifying 9 early metastatic cancers. Cell lineage markers were used to confirm squamous and neuroendocrine differentiation. Pan-cytokeratins were used to confirm the epithelial nature of poorly differentiated tumors, followed by tissue and cell lineage markers, which identified one melanoma. In total, 47/64 MUOs (73.4%) were confirmed CUP. Molecular analysis, feasible in 37/47 CUPs (78.7%), had no diagnostic impact. Twenty CUP patients, mainly with squamous carcinomas and adenocarcinomas with putative-gynecologic-immunophenotypes, presented with only lymph node metastases and had longer median time to progression and overall survival (< 0.001), compared with patients with other metastatic patterns. We propose a simplified histology-driven workup which could efficiently rule out CUPs and identify early metastatic cancer.


Asunto(s)
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Primarias Desconocidas , Humanos , Femenino , Neoplasias Primarias Desconocidas/diagnóstico , Neoplasias Primarias Desconocidas/patología , Inmunohistoquímica , Adenocarcinoma/metabolismo , Queratinas/análisis , Carcinoma de Células Escamosas/diagnóstico , Biomarcadores de Tumor/análisis
17.
Pathobiology ; 90(3): 155-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35858535

RESUMEN

INTRODUCTION: Optimization of pre-analytic procedures and tissue processing is a basic requirement for reliable and reproducible data to be obtained. Tissue fixation in formalin represents the extensively favored method for surgical tissue specimen processing in diagnostic pathology; however, formalin fixation exerts a blasting effect on DNA and RNA. METHODS: A formic acid-deprived formaldehyde solution was prepared by removing acids with an ion-exchange basic resin and the concentrated, acid-deprived formaldehyde (ADF) solution was employed to prepare a 4% ADF solution in 0.1 M phosphate buffer, pH 7.2-7.4. Human (n = 27) and mouse (n = 20) tissues were fixed in parallel and similar conditions in either ADF or neutral buffered formalin (NBF). DNAs and RNAs were extracted, and fragmentation analyses were performed. RESULTS: Besides no significant differences in terms of extraction yield and absorbance ratio, ADF fixation reduced DNA fragmentation, i.e., the largest fragments (>5,000 bp) were significantly more prevalent in the DNAs purified from ADF-fixed tissues (p < 0.001 in both cohorts). Moreover, we observed that DNA preservation is more stable in ADF-fixed tissue compared to NBF-fixed tissues. CONCLUSION: Although DNA fragmentation in FFPE tissues is a multifactor process, we showed that the removal of formic acid is responsible for a significant improvement in DNA preservation.


Asunto(s)
ADN , Formaldehído , Humanos , Animales , Ratones , Fijación del Tejido/métodos , ADN/análisis , Adhesión en Parafina
18.
Clin Cancer Res ; 29(3): 571-580, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413222

RESUMEN

PURPOSE: In JACOB trial, pertuzumab added to trastuzumab-chemotherapy did not significantly improve survival of patients with HER2-positive metastatic gastric cancer, despite 3.3 months increase versus placebo. HER2 copy-number variation (CNV) and AMNESIA panel encompassing primary resistance alterations (KRAS/PIK3CA/MET mutations, KRAS/EGFR/MET amplifications) may improve patients' selection for HER2 inhibition. EXPERIMENTAL DESIGN: In a post hoc analysis of JACOB on 327 samples successfully sequenced by next-generation sequencing (NGS; Oncomine Focus DNA), HER2 CNV, HER2 expression by IHC, and AMNESIA were correlated with overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) by univariable/multivariable models. RESULTS: Median HER2 CNV was 4.7 (interquartile range, 2.2-16.9). HER2 CNV-high versus low using the median as cutoff was associated with longer median PFS (10.5 vs. 6.4 months; HR = 0.48; 95% confidence interval: 0.38-0.62; P < 0.001) and OS (20.3 vs. 13.0 months; HR = 0.54; 0.42-0.72; P < 0.001). Combining HER2 CNV and IHC improved discriminative ability, with better outcomes restricted to HER2-high/HER2 3+ subgroup. AMNESIA positivity was found in 51 (16%), with unadjusted HR = 1.35 (0.98-1.86) for PFS; 1.43 (1.00-2.03) for OS.In multivariable models, only HER2 CNV status remained significant for PFS (P < 0.001) and OS (P = 0.004). Higher ORR was significantly associated with IHC 3+ [61% vs. 34% in 2+; OR = 3.11 (1.89-5.17)] and HER2-high [59% vs. 43% in HER2-low; OR = 1.84 (1.16-2.94)], with highest OR in the top CNV quartile. These biomarkers were not associated with treatment effect of pertuzumab. CONCLUSIONS: HER2 CNV-high assessed by NGS may be associated with better ORR, PFS, and OS in a JACOB subgroup, especially if combined with HER2 3+. The negative prognostic role of AMNESIA requires further clinical validation.


Asunto(s)
Neoplasias de la Mama , Neoplasias Gástricas , Humanos , Femenino , Trastuzumab/uso terapéutico , Trastuzumab/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Variaciones en el Número de Copia de ADN , Proteínas Proto-Oncogénicas p21(ras)/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico
19.
Pathologica ; 115(6): 292-301, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38180137

RESUMEN

This work explores the complex field of HER2 testing in the HER2-low breast cancer era, with a focus on methodological aspects. We aim to propose clear positions to scientific societies, institutions, pathologists, and oncologists to guide and shape the appropriate diagnostic strategies for HER2-low breast cancer. The fundamental question at hand is whether the necessary tools to effectively translate our knowledge about HER2 into practical diagnostic schemes for the lower spectrum of expression are available. Our investigation is centered on the significance of distinguishing between an immunohistochemistry (IHC) score 0 and score 1+ in light of the clinical implications now apparent, as patients with HER2-low breast cancer become eligible for trastuzumab-deruxtecan treatment. Furthermore, we discuss the definition of HER2-low beyond its conventional boundaries and assess the reliability of established diagnostic procedures designed at a time when therapeutic perspectives were non-existent for these cases. In this regard, we examine potential complementary technologies, such as gene expression analysis and liquid biopsy. Ultimately, we consider the potential role of artificial intelligence (AI) in the field of digital pathology and its integration into HER2 testing, with a particular emphasis on its application in the context of HER2-low breast cancer.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Reproducibilidad de los Resultados , Patólogos
20.
Front Oncol ; 12: 844250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110934

RESUMEN

Background: Advanced and unresectable bone and soft tissue sarcomas (BSTS) still represent an unmet medical need. We demonstrated that the alkylating agent trabectedin and the PARP1-inhibitor olaparib display antitumor activity in BSTS preclinical models. Moreover, in a phase Ib clinical trial (NCT02398058), feasibility, tolerability and encouraging results have been observed and the treatment combination is currently under study in a phase II trial (NCT03838744). Methods: Differential expression of genes involved in DNA Damage Response and Repair was evaluated by Nanostring® technology, extracting RNA from pre-treatment tumor samples of 16 responder (≥6-month progression free survival) and 16 non-responder patients. Data validation was performed by quantitative real-time PCR, RNA in situ hybridization, and immunohistochemistry. The correlation between the identified candidate genes and both progression-free survival and overall survival was investigated in the publicly available dataset "Sarcoma (TCGA, The Cancer Genome Atlas)". Results: Differential RNA expression analysis revealed an 8-gene signature (CDKN2A, PIK3R1, SLFN11, ATM, APEX2, BLM, XRCC2, MAD2L2) defining patients with better outcome upon trabectedin+olaparib treatment. In responder vs. non-responder patients, a significant differential expression of these genes was further confirmed by RNA in situ hybridization and by qRT-PCR and immunohistochemistry in selected experiments. Correlation between survival outcomes and genetic alterations in the identified genes was shown in the TCGA sarcoma dataset. Conclusions: This work identified an 8-gene expression signature to improve prediction of response to trabectedin+olaparib combination in BSTS. The predictive role of these potential biomarkers warrants further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...