Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(5): eadj2407, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295169

RESUMEN

Identifying the microscopic nature of non-equilibrium energy transfer mechanisms among electronic, spin, and lattice degrees of freedom is central to understanding ultrafast phenomena such as manipulating magnetism on the femtosecond timescale. Here, we use time- and angle-resolved photoemission spectroscopy to go beyond the often-used ensemble-averaged view of non-equilibrium dynamics in terms of quasiparticle temperature evolutions. We show for ferromagnetic Ni that the non-equilibrium electron and spin dynamics display pronounced variations with electron momentum, whereas the magnetic exchange interaction remains isotropic. This highlights the influence of lattice-mediated scattering processes and opens a pathway toward unraveling the still elusive microscopic mechanism of spin-lattice angular momentum transfer.

2.
Phys Rev E ; 108(5-1): 054133, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115530

RESUMEN

In optimal covariance cleaning theory, minimizing the Frobenius norm between the true population covariance matrix and a rotational invariant estimator is a key step. This estimator can be obtained asymptotically for large covariance matrices, without knowledge of the true covariance matrix. In this study, we demonstrate that this minimization problem is equivalent to minimizing the loss of information between the true population covariance and the rotational invariant estimator for normal multivariate variables. However, for Student's t distributions, the minimal Frobenius norm does not necessarily minimize the information loss in finite-sized matrices. Nevertheless, such deviations vanish in the asymptotic regime of large matrices, which might extend the applicability of random matrix theory results to Student's t distributions. These distributions are characterized by heavy tails and are frequently encountered in real-world applications such as finance, turbulence, or nuclear physics. Therefore, our work establishes a connection between statistical random matrix theory and estimation theory in physics, which is predominantly based on information theory.

3.
Phys Rev Lett ; 131(15): 156702, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897779

RESUMEN

The orbital Hall effect has been theoretically predicted but its direct observation is a challenge. Here, we report the magneto-optical detection of current-induced orbital accumulation at the surface of a light 3d transition metal, Cr. The orbital polarization is in-plane, transverse to the current direction, and scales linearly with current density, consistent with the orbital Hall effect. Comparing the thickness-dependent magneto-optical measurements with ab initio calculations, we estimate an orbital diffusion length in Cr of 6.6±0.6 nm.

4.
Adv Mater ; 33(14): e2007398, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33656190

RESUMEN

The anomalous Hall effect (AHE) is a fundamental spintronic charge-to-charge-current conversion phenomenon and closely related to spin-to-charge-current conversion by the spin Hall effect. Future high-speed spintronic devices will crucially rely on such conversion phenomena at terahertz (THz) frequencies. Here, it is revealed that the AHE remains operative from DC up to 40 THz with a flat frequency response in thin films of three technologically relevant magnetic materials: DyCo5 , Co32 Fe68 , and Gd27 Fe73 . The frequency-dependent conductivity-tensor elements σxx and σyx  are measured, and good agreement with DC measurements is found. The experimental findings are fully consistent with ab initio calculations of σyx for CoFe and highlight the role of the large Drude scattering rate (≈100 THz) of metal thin films, which smears out any sharp spectral features of the THz AHE. Finally, it is found that the intrinsic contribution to the THz AHE dominates over the extrinsic mechanisms for the Co32 Fe68 sample. The results imply that the AHE and related effects such as the spin Hall effect are highly promising ingredients of future THz spintronic devices reliably operating from DC to 40 THz and beyond.

5.
Nat Commun ; 10(1): 5381, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772174

RESUMEN

Efficient manipulation of magnetic order with electric current pulses is desirable for achieving fast spintronic devices. The Rashba-Edelstein effect, wherein spin polarization is electrically induced in noncentrosymmetric systems, provides a mean to achieve staggered spin-orbit torques. Initially predicted for spin, its orbital counterpart has been disregarded up to now. Here we report a generalized Rashba-Edelstein effect, which generates not only spin polarization but also orbital polarization, which we find to be far from being negligible. We show that the orbital Rashba-Edelstein effect does not require spin-orbit coupling to exist. We present first-principles calculations of the frequency-dependent spin and orbital Rashba-Edelstein tensors for the noncentrosymmetric antiferromagnets CuMnAs and Mn[Formula: see text]Au. We show that the electrically induced local magnetization can exhibit Rashba-like or Dresselhaus-like symmetries, depending on the magnetic configuration. We compute sizable induced magnetizations at optical frequencies, which suggest that electric-field driven switching could be achieved at much higher frequencies.

6.
J Phys Condens Matter ; 30(26): 265801, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29771242

RESUMEN

The phenomenological Landau-Lifshitz-Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy-Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.

7.
J Phys Condens Matter ; 29(19): 194002, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28337969

RESUMEN

Femtosecond magneto-optical pump-probe measurements of ultrafast demagnetization show an intriguing difference in the first 100 fs of the magneto-optical Kerr response depending on whether the polarization of the pump and probe beams are in parallel or perpendicular configuration (Bigot et al 2009 Nat. Phys. 5 515). Starting from a most general relativistic Hamiltonian we focus on the ultra-relativistic light-spin interaction and show that this coupling term leads to different light-induced opto-magnetic fields when pump and probe polarization are parallel and perpendicular to each other, providing thus an explanation for the measurements. We also analyze other pump-probe configurations where the pump laser is circularly polarized and the employed probe contains only linearly polarized light and show that similar opto-magnetic effects can be anticipated.

8.
Phys Rev Lett ; 117(13): 137203, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715112

RESUMEN

We present the first materials specific ab initio theory of the magnetization induced by circularly polarized laser light in metals. Our calculations are based on nonlinear density matrix theory and include the effect of absorption. We show that the induced magnetization, commonly referred to as inverse Faraday effect, is strongly materials and frequency dependent, and demonstrate the existence of both spin and orbital induced magnetizations which exhibit a surprisingly different behavior. We show that for nonmagnetic metals (such as Cu, Au, Pd, Pt) and antiferromagnetic metals the induced magnetization is antisymmetric in the light's helicity, whereas for ferromagnetic metals (Fe, Co, Ni, FePt) the imparted magnetization is only asymmetric in the helicity. We compute effective optomagnetic fields that correspond to the induced magnetizations and provide guidelines for achieving all-optical helicity-dependent switching.

9.
Nanoscale ; 7(3): 1096-101, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25479372

RESUMEN

We theoretically explored the combined role of conformational fluctuations and quantum interference in determining the electrical conductance of single-molecule break junctions. In particular we computed the conductance of a family of methylsulfide-functionalized trans-α,ω-diphenyloligoene molecules, with terminal phenyl rings containing meta or para linkages, for which (at least in the absence of fluctuations) destructive interference in the former is expected to decrease their electrical conductance compared with the latter. We compared the predictions of density functional theory (DFT), in which fluctuational effects are absent, with results for the conformationally-averaged conductance obtained from an ensemble of conformations obtained from classical molecular dynamics. We found that junctions formed from these molecules exhibit distinct transport regimes during junction evolution and the signatures of quantum interference in these molecules survive the effect of conformational fluctuations. Furthermore, the agreement between theory and experiment is significantly improved by including conformational averaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...