Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Lancet Respir Med ; 12(2): 117-128, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37980911

RESUMEN

BACKGROUND: Around 500 000 people worldwide develop rifampicin-resistant tuberculosis each year. The proportion of successful treatment outcomes remains low and new treatments are needed. Following an interim analysis, we report the final safety and efficacy outcomes of the TB-PRACTECAL trial, evaluating the safety and efficacy of oral regimens for the treatment of rifampicin-resistant tuberculosis. METHODS: This open-label, randomised, controlled, multi-arm, multicentre, non-inferiority trial was conducted at seven hospital and community sites in Uzbekistan, Belarus, and South Africa, and enrolled participants aged 15 years and older with pulmonary rifampicin-resistant tuberculosis. Participants were randomly assigned, in a 1:1:1:1 ratio using variable block randomisation and stratified by trial site, to receive 36-80 week standard care; 24-week oral bedaquiline, pretomanid, and linezolid (BPaL); BPaL plus clofazimine (BPaLC); or BPaL plus moxifloxacin (BPaLM) in stage one of the trial, and in a 1:1 ratio to receive standard care or BPaLM in stage two of the trial, the results of which are described here. Laboratory staff and trial sponsors were masked to group assignment and outcomes were assessed by unmasked investigators. The primary outcome was the percentage of participants with a composite unfavourable outcome (treatment failure, death, treatment discontinuation, disease recurrence, or loss to follow-up) at 72 weeks after randomisation in the modified intention-to-treat population (all participants with rifampicin-resistant disease who received at least one dose of study medication) and the per-protocol population (a subset of the modified intention-to-treat population excluding participants who did not complete a protocol-adherent course of treatment (other than because of treatment failure or death) and those who discontinued treatment early because they violated at least one of the inclusion or exclusion criteria). Safety was measured in the safety population. The non-inferiority margin was 12%. This trial is registered with ClinicalTrials.gov, NCT02589782, and is complete. FINDINGS: Between Jan 16, 2017, and March 18, 2021, 680 patients were screened for eligibility, of whom 552 were enrolled and randomly assigned (152 to the standard care group, 151 to the BPaLM group, 126 to the BPaLC group, and 123 to the BPaL group). The standard care and BPaLM groups proceeded to stage two and are reported here, post-hoc analyses of the BPaLC and BPaL groups are also reported. 151 participants in the BPaLM group and 151 in the standard care group were included in the safety population, with 138 in the BPaLM group and 137 in the standard care group in the modified intention-to-treat population. In the modified intention-to-treat population, unfavourable outcomes were reported in 16 (12%) of 137 participants for whom outcome was assessable in the BPaLM group and 56 (41%) of 137 participants in the standard care group (risk difference -29·2 percentage points [96·6% CI -39·8 to -18·6]; non-inferiority and superiority p<0·0001). 34 (23%) of 151 participants receiving BPaLM had adverse events of grade 3 or higher or serious adverse events, compared with 72 (48%) of 151 participants receiving standard care (risk difference -25·2 percentage points [96·6% CI -36·4 to -13·9]). Five deaths were reported in the standard care group by week 72, of which one (COVID-19 pneumonia) was unrelated to treatment and four (acute pancreatitis, suicide, sudden death, and sudden cardiac death) were judged to be treatment-related. INTERPRETATION: The 24-week, all-oral BPaLM regimen is safe and efficacious for the treatment of pulmonary rifampicin-resistant tuberculosis, and was added to the WHO guidance for treatment of this condition in 2022. These findings will be key to BPaLM becoming the preferred regimen for adolescents and adults with pulmonary rifampicin-resistant tuberculosis. FUNDING: Médecins Sans Frontières.


Asunto(s)
Nitroimidazoles , Pancreatitis , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Adolescente , Humanos , Rifampin , Enfermedad Aguda , Pancreatitis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Moxifloxacino , Linezolid/uso terapéutico
3.
Clin Infect Dis ; 78(3): 730-741, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-37874021

RESUMEN

BACKGROUND: Effectiveness, safety, tolerability, and adherence are critical considerations in shifting to shorter tuberculosis (TB) regimens. Novel 6-month oral regimens that include bedaquiline (B), pretomanid (Pa), and linezolid (L), with or without a fourth drug, have been shown to be as or more effective than the established longer regimens for the treatment of multidrug-resistant/rifampicin-resistant TB (MDR/RR-TB). We aimed to evaluate the safety and tolerability of linezolid in BPaL-containing regimens for the treatment of MDR/RR-TB among recently completed clinical trials. METHODS: A review and meta-analysis was undertaken including published and unpublished data from clinical trials, conducted between 2010 and 2021, that evaluated regimens containing BPaL for the treatment of MDR/RR-TB. Individual patient data were obtained. For each BPaL-containing regimen, we evaluated the frequency and severity of treatment-related adverse events. The risk difference of adverse events for each regimen was calculated, in comparison to patients assigned to receiving the lowest cumulative exposure of linezolid. RESULTS: Data from 3 clinical trials investigating 8 unique BPaL-containing regimens were included, comprising a total of 591 participants. Adverse events were more frequent in groups randomized to a higher cumulative linezolid dose. Among patients who were randomized to a daily dose of 1200 mg linezolid, 68 of 195 (35%) experienced a grade 3-4 adverse event versus 89 of 396 (22%) patients receiving BPaL-containing regimens containing 600 mg linezolid. CONCLUSIONS: Regimens containing BPaL were relatively well tolerated when they included a daily linezolid dose of 600 mg. These novel regimens promise to improve the tolerability of treatment for MDR/RR-TB.


Asunto(s)
Linezolid , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/efectos adversos , Diarilquinolinas/uso terapéutico , Linezolid/efectos adversos , Nitroimidazoles , Ensayos Clínicos Controlados Aleatorios como Asunto , Rifampin/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
4.
Cell Commun Signal ; 21(1): 342, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031192

RESUMEN

BACKGROUND: Despite improved patient outcome using tyrosine kinase inhibitors (TKIs), chronic myeloid leukaemia (CML) patients require life-long treatment due to leukaemic stem cell (LSC) persistence. LSCs reside in the bone marrow (BM) niche, which they modify to their advantage. The BM provides oncogene-independent signals to aid LSC cell survival and quiescence. The bone-morphogenetic pathway (BMP) is one pathway identified to be highly deregulated in CML, with high levels of BMP ligands detected in the BM, accompanied by CML stem and progenitor cells overexpressing BMP type 1 receptors- activin-like kinases (ALKs), especially in TKI resistant patients. Saracatinib (SC), a SRC/ABL1 dual inhibitor, inhibits the growth of CML cells resistant to the TKI imatinib (IM). Recent studies indicate that SC is also a potent ALK inhibitor and BMP antagonist. Here we investigate the efficacy of SC in overcoming CML BCR::ABL1 dependent and independent signals mediated by the BM niche both in 2D and 3D culture. METHODS: CML cells (K562 cell line and CML CD34+ primary cells) were treated with single or combination treatments of: IM, SC and the BMP receptors inhibitor dorsomorphin (DOR), with or without BMP4 stimulation in 2D (suspension) and 3D co-culture on HS5 stroma cell line and mesenchymal stem cells in AggreWell and microfluidic devices. Flow cytometry was performed to investigate apoptosis, cell cycle progression and proliferation, alongside colony assays following treatment. Proteins changes were validated by immunoblotting and transcriptional changes by Fluidigm multiplex qPCR. RESULTS: By targeting the BMP pathway, using specific inhibitors against ALKs in combination with SRC and ABL TKIs, we show an increase in apoptosis, altered cell cycle regulation, fewer cell divisions, and reduced numbers of CD34+ cells. Impairment of long-term proliferation and differentiation potential after combinatorial treatment also occurred. CONCLUSION: BMP signalling pathway is important for CML cell survival. Targeting SRC, ABL and ALK kinases is more effective than ABL inhibition alone, the combination efficacy importantly being demonstrated in both 2D and 3D cell cultures highlighting the need for combinatorial therapies in contrast to standard of care single agents. Our study provides justification to target multiple kinases in CML to combat LSC persistence.


Blood is made in the spongy inner most section of the bone, called the bone marrow. The bone marrow is where normal blood stem cells live that are responsible for producing the different blood cell types; white blood cells (fight infections), red blood cells (carrying oxygen around the body), platelets (blood clotting) and other cells which support this process. Chronic myeloid leukaemia (CML) is a type of blood cancer that starts in the bone marrow. CML occurs when a normal blood stem cell becomes damaged, forming a leukaemia stem cell (LSC), leading to blood cancer. LSCs multiply and generate many faulty cancerous white blood cells that do not work properly. Patients are treated with a drug called imatinib, which reduces the number of cancerous cells circulating in the body. In many cases, this treatment is not enough to cure the disease because the bone marrow protects the LSCs from the drug meaning patients must remain on long term treatment. This work has discovered one of the ways in which the bone marrow protects LSCs from treatments and has used this knowledge to test new drugs that stop this protection. Our findings show that by combining two drugs, one that overcomes this protection and one that directly targets the cancerous cells, we can destroy more of the LSCs. These findings are a step closer towards a cure for CML and could improve treatment for patients in the future. Video Abstract.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Médula Ósea/metabolismo , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Apoptosis , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas de Fusión bcr-abl , Células Madre Neoplásicas/metabolismo , Resistencia a Antineoplásicos
5.
Commun Med (Lond) ; 3(1): 75, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237062

RESUMEN

BACKGROUND: Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC. METHODS: We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the ancestral D614 and the variant Beta strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting. RESULTS: We show that a primary immunization with the bivalent CoV2 preS dTM-AS03 elicits broader and durable (1 year) neutralizing antibody responses against VOC including Omicron BA.1 and BA.4/5, and SARS-CoV-1 as compared to the ancestral D614 or Beta variant monovalent vaccines in naïve non-human primates. In addition, the bivalent formulation confers protection against viral challenge with SARS-CoV-2 prototype D614G strain as well as Alpha and Beta variant strains in hamsters. CONCLUSIONS: Our findings demonstrate the potential of a Beta-containing bivalent CoV2 preS dTM-AS03 formulation to provide broad and durable immunogenicity, as well as protection against VOC in naïve populations.


SARS-CoV-2 has changed over time, resulting in different forms of the virus called variants. These variants compromise the protection offered by the COVID-19 vaccines, which trigger an immune response against the viral Spike protein that allows the virus to attach and infect human cells, since their spike proteins are different. Here, we developed and tested a vaccine containing two different Spike proteins, one from the original Wuhan strain and another from the Beta variant. In macaques, the vaccine leads to the production of antibodies able to stop all variants tested from infecting human cells, including Omicron, with stable levels over one year. In hamsters, the vaccine protected against infection with the ancestral virus and the Alpha and Beta variants. Our findings have important implications for vaccine control of existing and future SARS-CoV-2 variants of concern.

6.
Nat Commun ; 14(1): 1309, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36894558

RESUMEN

The rapid spread of the SARS-CoV-2 Omicron subvariants, despite the implementation of booster vaccination, has raised questions about the durability of protection conferred by current vaccines. Vaccine boosters that can induce broader and more durable immune responses against SARS-CoV-2 are urgently needed. We recently reported that our Beta-containing protein-based SARS-CoV-2 spike booster vaccine candidates with AS03 adjuvant (CoV2 preS dTM-AS03) elicited robust cross-neutralizing antibody responses at early timepoints against SARS-CoV-2 variants of concern in macaques primed with mRNA or protein-based subunit vaccine candidates. Here we demonstrate that the monovalent Beta vaccine with AS03 adjuvant induces durable cross-neutralizing antibody responses against the prototype strain D614G as well as variants Delta (B.1.617.2), Omicron (BA.1 and BA.4/5) and SARS-CoV-1, that are still detectable in all macaques 6 months post-booster. We also describe the induction of consistent and robust memory B cell responses, independent of the levels measured post-primary immunization. These data suggest that a booster dose with a monovalent Beta CoV2 preS dTM-AS03 vaccine can induce robust and durable cross-neutralizing responses against a broad spectrum of variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas contra la COVID-19 , Anticuerpos ampliamente neutralizantes , Subunidades de Proteína , Macaca , Primates , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
N Engl J Med ; 387(25): 2331-2343, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36546625

RESUMEN

BACKGROUND: In patients with rifampin-resistant tuberculosis, all-oral treatment regimens that are more effective, shorter, and have a more acceptable side-effect profile than current regimens are needed. METHODS: We conducted an open-label, phase 2-3, multicenter, randomized, controlled, noninferiority trial to evaluate the efficacy and safety of three 24-week, all-oral regimens for the treatment of rifampin-resistant tuberculosis. Patients in Belarus, South Africa, and Uzbekistan who were 15 years of age or older and had rifampin-resistant pulmonary tuberculosis were enrolled. In stage 2 of the trial, a 24-week regimen of bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) was compared with a 9-to-20-month standard-care regimen. The primary outcome was an unfavorable status (a composite of death, treatment failure, treatment discontinuation, loss to follow-up, or recurrence of tuberculosis) at 72 weeks after randomization. The noninferiority margin was 12 percentage points. RESULTS: Recruitment was terminated early. Of 301 patients in stage 2 of the trial, 145, 128, and 90 patients were evaluable in the intention-to-treat, modified intention-to-treat, and per-protocol populations, respectively. In the modified intention-to-treat analysis, 11% of the patients in the BPaLM group and 48% of those in the standard-care group had a primary-outcome event (risk difference, -37 percentage points; 96.6% confidence interval [CI], -53 to -22). In the per-protocol analysis, 4% of the patients in the BPaLM group and 12% of those in the standard-care group had a primary-outcome event (risk difference, -9 percentage points; 96.6% CI, -22 to 4). In the as-treated population, the incidence of adverse events of grade 3 or higher or serious adverse events was lower in the BPaLM group than in the standard-care group (19% vs. 59%). CONCLUSIONS: In patients with rifampin-resistant pulmonary tuberculosis, a 24-week, all-oral regimen was noninferior to the accepted standard-care treatment, and it had a better safety profile. (Funded by Médecins sans Frontières; TB-PRACTECAL ClinicalTrials.gov number, NCT02589782.).


Asunto(s)
Antituberculosos , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Humanos , Antituberculosos/administración & dosificación , Antituberculosos/efectos adversos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Quimioterapia Combinada , Moxifloxacino/administración & dosificación , Moxifloxacino/efectos adversos , Moxifloxacino/uso terapéutico , Rifampin/efectos adversos , Rifampin/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Adolescente , Adulto Joven , Adulto , Linezolid/administración & dosificación , Linezolid/efectos adversos , Linezolid/uso terapéutico , Administración Oral
8.
Trials ; 23(1): 484, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698158

RESUMEN

BACKGROUND: Globally rifampicin-resistant tuberculosis disease affects around 460,000 people each year. Currently recommended regimens are 9-24 months duration, have poor efficacy and carry significant toxicity. A shorter, less toxic and more efficacious regimen would improve outcomes for people with rifampicin-resistant tuberculosis. METHODS: TB-PRACTECAL is an open-label, randomised, controlled, phase II/III non-inferiority trial evaluating the safety and efficacy of 24-week regimens containing bedaquiline and pretomanid to treat rifampicin-resistant tuberculosis. Conducted in Uzbekistan, South Africa and Belarus, patients aged 15 and above with rifampicin-resistant pulmonary tuberculosis and requiring a new course of therapy were eligible for inclusion irrespective of HIV status. In the first stage, equivalent to a phase IIB trial, patients were randomly assigned one of four regimens, stratified by site. Investigational regimens include oral bedaquiline, pretomanid and linezolid. Additionally, two of the regimens also included moxifloxacin (arm 1) and clofazimine (arm 2) respectively. Treatment was administered under direct observation for 24 weeks in investigational arms and 36 to 96 weeks in the standard of care arm. The second stage of the study was equivalent to a phase III trial, investigating the safety and efficacy of the most promising regimen/s. The primary outcome was the percentage of unfavourable outcomes at 72 weeks post-randomisation. This was a composite of early treatment discontinuation, treatment failure, recurrence, lost-to-follow-up and death. The study is being conducted in accordance with ICH-GCP and full ethical approval was obtained from Médecins sans Frontières ethical review board, London School of Hygiene and Tropical Medicine ethical review board as well as ERBs and regulatory authorities at each site. DISCUSSION: TB-PRACTECAL is an ambitious trial using adaptive design to accelerate regimen assessment and bring novel treatments that are effective and safe to patients quicker. The trial took a patient-centred approach, adapting to best practice guidelines throughout recruitment. The implementation faced significant challenges from the COVID-19 pandemic. The trial was terminated early for efficacy on the advice of the DSMB and will report on data collected up to the end of recruitment and, additionally, the planned final analysis at 72 weeks after the end of recruitment. TRIAL REGISTRATION: Clinicaltrials.gov NCT02589782. Registered on 28 October 2015.


Asunto(s)
Antituberculosos/uso terapéutico , Diarilquinolinas/uso terapéutico , Linezolid/uso terapéutico , Rifampin/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Adolescente , Adulto , Antibióticos Antituberculosos/farmacología , Antibióticos Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Diarilquinolinas/farmacología , Humanos , Linezolid/farmacología , Pandemias , Rifampin/farmacología , Resultado del Tratamiento , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Adulto Joven
9.
Br J Cancer ; 127(8): 1385-1393, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35715635

RESUMEN

Breast cancer (BC) remains the most common cancer, as well as the leading cause of cancer mortality in women worldwide [1]. Approximately 30% of patients with early-stage BC experience metastasis or a recurrent form of the disease [2]. The phenomenon of BC dormancy, where metastasised cancer cells remain in a quiescent phase at their disseminated location and for unknown reasons can become actively proliferative again, further adds to BC's clinical burden with treatment at this secondary stage typically proving futile. An emerging avenue of research focuses on the metabolic properties of dormant BC cells (BCCs) and potential metabolic changes causing BCCs to enter/exit their quiescent state. Here we explore several studies that have uncovered changes in carbon metabolism underlying a dormant state, with conflicting studies uncovering shifts towards both glycolysis and/or oxidative phosphorylation. This review highlights that the metabolic states/shifts of dormant BCCs seem to be dependent on different BC subtypes and receptor status; however, more work needs to be done to fully map these differences. Building on the research that this review outlines could provide new personalised therapeutic possibilities for BC patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/patología , Carbono , División Celular , Femenino , Humanos
10.
Nat Commun ; 13(1): 1699, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361754

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that partly evade neutralizing antibodies raises concerns of reduced vaccine effectiveness and increased infection. We previously demonstrated that the SARS-CoV-2 spike protein vaccine adjuvanted with AS03 (CoV2 preS dTM-AS03) elicits robust neutralizing antibody responses in naïve subjects. Here we show that, in macaques primed with mRNA or protein-based subunit vaccine candidates, one booster dose of CoV2 preS dTM-AS03 (monovalent D614 or B.1.351, or bivalent D614 + B.1.351 formulations), significantly boosts the pre-existing neutralizing antibodies against the parental strain from 177- to 370-fold. Importantly, the booster dose elicits high and persistent cross-neutralizing antibodies covering five former or current SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and, unexpectedly, SARS-CoV-1. Interestingly, we show that the booster specifically increases the functional antibody responses as compared to the receptor binding domain (RBD)-specific responses. Our findings show that these vaccine candidates, when used as a booster, have the potential to offer cross-protection against a broad spectrum of variants. This has important implications for vaccine control of SARS-CoV-2 variants of concern and informs on the benefit of a booster with the vaccine candidates currently under evaluation in clinical trials.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Primates , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
11.
PLOS Glob Public Health ; 2(12): e0001337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962909

RESUMEN

Current options for treating tuberculosis (TB) that is resistant to rifampicin (RR-TB) are few, and regimens are often long and poorly tolerated. Following recent evidence from the TB-PRACTECAL trial countries are considering programmatic uptake of 6-month, all-oral treatment regimens. We used a Markov model to estimate the incremental cost-effectiveness of three regimens containing bedaquiline, pretomanid and linezolid (BPaL) with and without moxifloxacin (BPaLM) or clofazimine (BPaLC) compared with the current mix of long and short standard of care (SOC) regimens to treat RR-TB from the provider perspective in India, Georgia, Philippines, and South Africa. We estimated total costs (2019 USD) and disability-adjusted life years (DALYs) over a 20-year time horizon. Costs and DALYs were discounted at 3% in the base case. Parameter uncertainty was tested with univariate and probabilistic sensitivity analysis. We found that all three regimens would improve health outcomes and reduce costs compared with the current programmatic mix of long and short SOC regimens in all four countries. BPaL was the most cost-saving regimen in all countries, saving $112-$1,173 per person. BPaLM was the preferred regimen at a willingness to pay per DALY of 0.5 GDP per capita in all settings. Our findings indicate BPaL-based regimens are likely to be cost-saving and more effective than the current standard of care in a range of settings. Countries should consider programmatic uptake of BPaL-based regimens.

12.
BMJ Open ; 11(9): e047185, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489274

RESUMEN

INTRODUCTION: Drug-resistant tuberculosis (TB) remains a global health threat, with little over 50% of patients successfully treated. Novel regimens like the ones being studied in the TB-PRACTECAL trial are urgently needed. Understanding anti-TB drug exposures could explain the success or failure of these trial regimens. We aim to study the relationship between the patients' exposure to anti-TB drugs in TB-PRACTECAL investigational regimens and their treatment outcomes. METHODS AND ANALYSIS: Adults with multidrug-resistant TB randomised to investigational regimens in TB-PRACTECAL will be recruited to a nested pharmacokinetic-pharmacodynamic (PKPD) study. Venous blood samples will be collected at 0, 2 and 23 hours postdose on day 1 and 0, 6.5 and 23 hours postdose during week 8 to quantify drug concentrations in plasma. Trough samples will be collected during week 12, 16, 20 and 24 visits. Opportunistic samples will be collected during weeks 32 and 72. Drug concentrations will be quantified using liquid chromatography-tandem mass spectrometry. Sputum samples will be collected at baseline, monthly to week 24 and then every 2 months to week 108 for MICs and bacillary load quantification. Full blood count, urea and electrolytes, liver function tests, lipase, ECGs and ophthalmology examinations will be conducted at least monthly during treatment.PK and PKPD models will be developed for each drug with nonlinear mixed effects methods. Optimal dosing will be investigated using Monte-Carlo simulations. ETHICS AND DISSEMINATION: The study has been approved by the Médecins sans Frontières (MSF) Ethics Review Board, the LSHTM Ethics Committee, the Belarus RSPCPT ethics committee and PharmaEthics and the University of Witwatersrand Human Research ethics committee in South Africa. Written informed consent will be obtained from all participants. The study results will be shared with public health authorities, presented at scientific conferences and published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT04081077; Pre-results.


Asunto(s)
Drogas en Investigación , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Antituberculosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
13.
Sci Transl Med ; 13(607)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34315825

RESUMEN

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike protein trimers (preS dTM) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHPs). Binding and functional neutralization assays and systems serology revealed that the vaccinated NHP developed AS03-dependent multifunctional humoral responses that targeted distinct domains of the spike protein and bound to a variety of Fc receptors mediating immune cell effector functions in vitro. The neutralizing 50% inhibitory concentration titers for pseudovirus and live SARS-CoV-2 were higher than titers for a panel of human convalescent serum samples. NHPs were challenged intranasally and intratracheally with a high dose (3 × 106 plaque forming units) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days after challenge, vaccinated NHPs showed rapid control of viral replication in both the upper and lower airways. Vaccinated NHPs also had increased spike protein-specific immunoglobulin G (IgG) antibody responses in the lung as early as 2 days after challenge. Moreover, passive transfer of vaccine-induced IgG to hamsters mediated protection from subsequent SARS-CoV-2 challenge. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine were sufficient to mediate protection against SARS-CoV-2 in NHPs and that rapid anamnestic antibody responses in the lung may be a key mechanism for protection.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Cricetinae , Inmunización Pasiva , Pulmón , Primates , SARS-CoV-2 , Vacunación , Sueroterapia para COVID-19
14.
J Biomater Appl ; 36(3): 541-551, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34018854

RESUMEN

Hydrogels are reported to have various biomedical field applications, and many reports also suggest that soft gels promote stem cell differentiation. Chondrogenic differentiation of mesenchymal stem cells (MSC) is significant in articular cartilage repair. This study focuses on polysaccharide-based hydrogels which enhance chondrocyte lineage differentiation of MSC when grown in the hydrogels. This study implies that the prepared hydrogels promote specific lineage without any external chemical induction factors. The techniques, including immunofluorescence and functional assays to assess the differentiation and in vivo implantation, were employed. All observations paved the way towards confirmation that the galactoxyloglucan-based hydrogel is an attractive candidate for supporting stem cell growth and cartilaginous differentiation.


Asunto(s)
Resinas Acrílicas/química , Galactosa/química , Glucanos/química , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Cartílago Articular , Diferenciación Celular , Células Cultivadas , Condrocitos/citología , Condrogénesis , Hidrogeles/química , Ratas , Ratas Wistar
15.
bioRxiv ; 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33688652

RESUMEN

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3×106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.

16.
ERJ Open Res ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33585652

RESUMEN

BACKGROUND: In 2016, World Health Organization guidelines conditionally recommended standardised shorter 9-12-month regimens for multidrug-resistant (MDR) tuberculosis (TB) treatment. We conducted a prospective study of a shorter standardised MDR-TB regimen in Karakalpakstan, Uzbekistan. METHODS: Consecutive adults and children with confirmed rifampicin-resistant pulmonary TB were enrolled between September 1, 2013 and March 31, 2015; exclusions included prior treatment with second-line anti-TB drugs, and documented resistance to ofloxacin or to two second-line injectable agents. The primary outcome was recurrence-free cure at 1 year following treatment completion. RESULTS: Of 146 enrolled patients, 128 were included: 67 female (52.3%), median age 30.1 (interquartile range 23.8-44.4) years. At the end of treatment, 71.9% (92 out of 128) of patients achieved treatment success, with 68% (87 out of 128) achieving recurrence-free cure at 1 year following completion. Unsuccessful outcomes during treatment included 22 (17.2%) treatment failures with fluoroquinolone-resistance amplification in 8 patients (8 out of 22, 36.4%); 12 (9.4%) lost to follow-up; and 2 (1.5%) deaths. Recurrence occurred in one patient. Fourteen patients (10.9%) experienced serious adverse events. Baseline resistance to both pyrazinamide and ethambutol (adjusted OR 6.13, 95% CI 2.01; 18.63) and adherence <95% (adjusted OR 5.33, 95% CI 1.73; 16.36) were associated with unsuccessful outcome in multivariable logistic regression. CONCLUSIONS: Overall success with a standardised shorter MDR-TB regimen was moderate with considerable treatment failure and amplification of fluoroquinolone resistance. When introducing standardised shorter regimens, baseline drug susceptibility testing and minimising missed doses are critical. High rates globally of pyrazinamide, ethambutol and ethionamide resistance raise questions of continued inclusion of these drugs in shorter regimens in the absence of drug susceptibility testing-confirmed susceptibility.

17.
Sci Rep ; 10(1): 14971, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917945

RESUMEN

Mannheimia haemolytica is the primary bacterial species associated with respiratory disease of ruminants. A lack of cost-effective, reproducible models for the study of M. haemolytica pathogenesis has hampered efforts to better understand the molecular interactions governing disease progression. We employed a highly optimised ovine tracheal epithelial cell model to assess the colonisation of various pathogenic and non-pathogenic M. haemolytica isolates of bovine and ovine origin. Comparison of single representative pathogenic and non-pathogenic ovine isolates over ten time-points by enumeration of tissue-associated bacteria, histology, immunofluorescence microscopy and scanning electron microscopy revealed temporal differences in adhesion, proliferation, bacterial cell physiology and host cell responses. Comparison of eight isolates of bovine and ovine origin at three key time-points (2 h, 48 h and 72 h), revealed that colonisation was not strictly pathogen or serotype specific, with isolates of serotype A1, A2, A6 and A12 being capable of colonising the cell layer regardless of host species or disease status of the host. A trend towards increased proliferative capacity by pathogenic ovine isolates was observed. These results indicate that the host-specific nature of M. haemolytica infection may result at least partially from the colonisation-related processes of adhesion, invasion and proliferation at the epithelial interface.


Asunto(s)
Células Epiteliales/microbiología , Interacciones Huésped-Parásitos , Mannheimia haemolytica , Infecciones por Pasteurellaceae/microbiología , Enfermedades de las Ovejas/microbiología , Ovinos/microbiología , Tráquea/microbiología , Animales , Mannheimia haemolytica/patogenicidad , Mannheimia haemolytica/fisiología , Infecciones por Pasteurellaceae/veterinaria
18.
Nanomedicine (Lond) ; 15(25): 2433-2445, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32914695

RESUMEN

Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging. Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with their in vitro cytotoxicity assessed, followed by imaging assessments. Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal. Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.


Asunto(s)
Oro , Nanopartículas de Magnetita , Línea Celular Tumoral , Humanos , Imagen por Resonancia Magnética , Nanopartículas del Metal , Tomografía Computarizada por Rayos X , Ultrasonografía Intervencional
19.
NPJ Vaccines ; 5(1): 19, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194996

RESUMEN

The recent spread of Zika virus (ZIKV) through the Americas and Caribbean and its devastating consequences for pregnant women and their babies have driven the search for a safe and efficacious ZIKV vaccine. Among the vaccine candidates, a first-generation ZIKV purified inactivated vaccine (ZPIV), adjuvanted with aluminum hydroxide, developed by the Walter Reed Army Institute of Research (WRAIR), has elicited high seroconversion rates in participants in three phase-I clinical trials. In collaboration with the WRAIR, Sanofi Pasteur (SP) optimized the production scale, culture and purification conditions, and increased the regulatory compliance, both of which are critical for clinical development and licensure of this vaccine. Using a clinical batch of the first-generation ZPIV as a benchmark, we report that different doses of the optimized vaccine (ZPIV-SP) elicited sustained neutralizing antibodies, specific T- and memory B-cells, and provided complete protection against a ZIKV challenge in cynomolgus macaques. These data provide evidence that the ZPIV-SP vaccine performs at least as well as the ZPIV vaccine, and provide support for continued development in the event of future ZIKV outbreaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...