Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(7): 1997-2012, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38064717

RESUMEN

In this study, a chilli pepper (Capsicum annuum) panel for post-harvest carotenoid retention was studied to elucidate underlying mechanisms associated with this commercial trait of interest. Following drying and storage, some lines within the panel had an increase in carotenoids approaching 50% compared with the initial content at the fresh fruit stage. Other lines displayed a 25% loss of carotenoids. The quantitative determination of carotenoid pigments with concurrent cellular analysis indicated that in most cases, pepper fruit with thicker (up to 4-fold) lipid exocarp layers and smooth surfaces exhibit improved carotenoid retention properties. Total cutin monomer content increased in medium/high carotenoid retention fruits and subepidermal cutin deposits were responsible for the difference in exocarp thickness. Cutin biosynthesis and cuticle precursor transport genes were differentially expressed between medium/high and low carotenoid retention genotypes, and this supports the hypothesis that the fruit cuticle can contribute to carotenoid retention. Enzymatic degradation of the cuticle and cell wall suggests that in Capsicum the carotenoids (capsanthin and its esters) are embedded in the lipidic exocarp layer. This was not the case in tomato. Collectively, the data suggest that the fruit cuticle could provide an exploitable resource for the enhancement of fruit quality.


Asunto(s)
Capsicum , Capsicum/metabolismo , Frutas/metabolismo , Carotenoides/metabolismo
2.
Methods Enzymol ; 671: 285-300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35878982

RESUMEN

Carotenoid biosynthesis and sequestration in higher plants occurs in the plastid organelle. Among diverse germplasm collections displaying natural variation for carotenoids and outputs from metabolic engineering experiments it has become clear that plastid type and numbers can have important implications on the quantitative composition of carotenoids accumulating. Therefore, it is important to characterize these organelles to fully evaluate the potential of the germplasm to enhance carotenoids and create nutrient dense fruits and vegetables. In this article the procedures used to isolate sub-plastidial structures from carotenoid-rich Solanaceae fruits (tomato and Capsicum) are described.


Asunto(s)
Frutas , Solanum lycopersicum , Carotenoides/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Plastidios/metabolismo
3.
Methods Enzymol ; 670: 155-178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35871835

RESUMEN

Carotenoid biosynthesis has now been subjected to metabolic engineering for over two decades. The outputs clearly show that carotenoid formation is an integral component of metabolism. Perturbations can affect intermediary metabolism and other isoprenoids. The advances in omic technologies have enabled the quantitative assessment of changes in the transcriptome, proteome and metabolome in response to altered carotenoid biosynthesis. In the present article, the approaches and procedures relating to the capture of the metabolome in response to modulation of the carotenoid biosynthetic pathway are described. These data will contribute to the fundamental understanding of metabolic biology, underpinning future rationale design of New Plant Breeding Techniques (NPBTs) and associated regulatory affairs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ingeniería Metabólica , Carotenoides/metabolismo , Ingeniería Metabólica/métodos , Metaboloma , Metabolómica/métodos
4.
J Plant Physiol ; 258-259: 153378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33631493

RESUMEN

Over the previous decades, biotechnological innovations have led to improved agricultural productivity, more nutritious foods and lower chemical usage. Both in western societies and Low Medium Income Countries (LMICs). However, the projected increases in the global population, means the production of nutritious food stuffs must increase dramatically. Building on existing genetic modification technologies a series of New Plant Breeding Technologies (NPBT) has recently emerged. These approaches include, Agro-infiltration, grafting, cis and intragenesis and gene editing technologies. How these new techniques should be regulated has fostered considerable debate. Concerns have also been raised, to ensure over-regulation does not arise, creating administrative and economic burden. In this article the existing landscape of genetically modified crops is reviewed and the potential of several New Plant Breeding Techniques (NPBT) described. Metabolomics is an omic technology that has developed in a concurrent manner with biotechnological advances in plant breeding. There is potentially further opportunities to advance our metabolomic technologies to characterise the outputs of New Plant Breeding Technologies, in a manner that is beneficial both from an academic, biosafety and industrial perspective.


Asunto(s)
Productos Agrícolas/genética , Metabolómica/métodos , Fitomejoramiento/legislación & jurisprudencia , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , Biotecnología/métodos
5.
Food Chem (Oxf) ; 2: 100013, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35415633

RESUMEN

Carotenoids are the pigments responsible for conferring the characteristic deep red colour to chilli pepper. The post-harvest retention of this colour is a key trait that governs the price of the produce. Determining colour retention and the associated underlying biochemical mechanisms are important issues that require investigation. In this present study, the ability of image analysis to determine colour change in ground chilli fruit was evaluated. This method enabled differentiation of extreme retention phenotypes whilst also reducing the duration of storage required to make accurate determinations. The analysis of volatiles indicated different levels of lipid and carotenoid derived volatiles in lines with different retention properties. Metabolite profiling of intermediary metabolism supported these findings, with increased levels of unsaturated fatty acids present in lines with low retention properties. Collectively, these data have led us to propose that in chilli fruit lipid peroxidation is one of the progenitors of carotenoid degradation.

6.
J Exp Bot ; 70(10): 2637-2650, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30820539

RESUMEN

The exploitation of diverse natural variation has been a key progenitor of crop breeding over the last decade. However, commercial practice is now turning to the use of accessions with less extreme phenotypes as genetic donors. In the present study, the carotenoid formation in a red-fruited discovery panel of Capsicum annuum (chilli pepper) has been characterized. The data indicated that colour intensity correlated with the amount of capsanthin and its esters, along with transcript levels of the 1-deoxy-d-xylulose 5-phosphate synthase (DXS) and phytoene synthase-1 (PSY-1) genes. Quantification of carotenoids through development and ripening suggested the presence of separate biosynthesis and accumulation phases. Subplastid fractionation demonstrated the differential sequestration of pigments in high- and low-intensity lines and revealed the PSY protein to be most active in the membrane fractions when abundance was highest in the fibril fractions. Carotenoid accumulation was associated with the esterification of xanthophylls, expression of a putative carotenoid acyl transferase, and increased fibril content within the plastid. Interrogation of TEM images and carotenoid analysis of subplastid fractions suggest that the plastoglobuli are likely to be the progenitor of the characteristic fibrils found in pepper fruit. Collectively, these data provide an insight into the underpinning molecular, biochemical, and cellular mechanisms associated with the synthesis and sequestration of carotenoids in chromoplast-containing fruits, in addition to providing potential tools and resources for the breeding of high red colour intensity pepper varieties.


Asunto(s)
Capsicum/metabolismo , Carotenoides/metabolismo , Color , Pigmentación , Frutas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...