Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Dev Med Child Neurol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840441

RESUMEN

First-line genetic investigations for rare neurological and developmental conditions have limitations in their ability to detect and characterize copy number variants (CNVs). Whole genome sequencing (WGS) offers potential advantages over other methods of CNV analysis. We aimed to demonstrate the utility of CNV detection using WGS through description of three clinical cases. WGS analysis was undertaken in three patients presenting to a national rare disease service, in whom a genetic aetiology remained uncertain after gene panel testing or microarray based comparative genomic hybridization (array CGH). In all three cases, WGS identified CNVs and confirmed zygosity and pathogenicity, resulting in genetic diagnoses of PRKN-related Parkinson disease, TAOK1-related neurodevelopmental disorder, and AP1G1-related Usmani-Riazuddin syndrome. This case series demonstrates the value of WGS analysis in identifying or better characterizing CNVs that were missed or deemed of uncertain significance using conventional methods of testing. Importantly, our approach facilitated accurate genetic diagnosis and counselling for the families involved.

2.
Nat Med ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821540

RESUMEN

Most people with intellectual disability (ID) do not receive a molecular diagnosis following genetic testing. To identify new etiologies of ID, we performed a genetic association analysis comparing the burden of rare variants in 41,132 noncoding genes between 5,529 unrelated cases and 46,401 unrelated controls. RNU4-2, which encodes U4 small nuclear RNA, a critical component of the spliceosome, was the most strongly associated gene. We implicated de novo variants among 47 cases in two regions of RNU4-2 in the etiology of a syndrome characterized by ID, microcephaly, short stature, hypotonia, seizures and motor delay. We replicated this finding in three collections, bringing the number of unrelated cases to 73. Analysis of national genomic diagnostic data showed RNU4-2 to be a more common etiological gene for neurodevelopmental abnormality than any previously reported autosomal gene. Our findings add to the growing evidence of spliceosome dysfunction in the etiologies of neurological disorders.

3.
Mov Disord ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581205

RESUMEN

BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Genet Med ; 24(9): 1867-1877, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35657381

RESUMEN

PURPOSE: Variant classifications may change over time, driven by emergence of fresh or contradictory evidence or evolution in weighing or combination of evidence items. For variant classifications above the actionability threshold, which is classification of likely pathogenic or pathogenic, clinical actions may be irreversible, such as risk-reducing surgery or prenatal interventions. Variant reclassification up or down across the actionability threshold can therefore have significant clinical consequences. Laboratory approaches to variant reinterpretation and reclassification vary widely. METHODS: Cancer Variant Interpretation Group UK is a multidisciplinary network of clinical scientists and genetic clinicians from across the 24 Molecular Diagnostic Laboratories and Clinical Genetics Services of the United Kingdom (NHS) and Republic of Ireland. We undertook surveys, polls, and national meetings of Cancer Variant Interpretation Group UK to evaluate opinions about clinical and laboratory management regarding variant reclassification. RESULTS: We generated a consensus framework on variant reclassification applicable to cancer susceptibility genes and other clinical areas, which provides explicit recommendations for clinical and laboratory management of variant reclassification scenarios on the basis of the nature of the new evidence, the magnitude of evidence shift, and the final classification score. CONCLUSION: In this framework, clinical and laboratory resources are targeted for maximal clinical effect and minimal patient harm, as appropriate to all resource-constrained health care settings.


Asunto(s)
Pruebas Genéticas , Neoplasias , Predisposición Genética a la Enfermedad , Variación Genética/genética , Humanos , Laboratorios , Neoplasias/diagnóstico , Neoplasias/genética
5.
Hum Mol Genet ; 31(10): 1574-1587, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34964473

RESUMEN

Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.


Asunto(s)
Proteínas de Caenorhabditis elegans , Ciliopatías , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/genética , Cilios/metabolismo , Ciliopatías/metabolismo , Edición Génica , Humanos , Mutación Missense/genética
6.
Genet Med ; 24(3): 552-563, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906453

RESUMEN

PURPOSE: Conditions and thresholds applied for evidence weighting of within-codon concordance (PM5) for pathogenicity vary widely between laboratories and expert groups. Because of the sparseness of available clinical classifications, there is little evidence for variation in practice. METHODS: We used as a truthset 7541 dichotomous functional classifications of BRCA1 and MSH2, spanning 311 codons of BRCA1 and 918 codons of MSH2, generated from large-scale functional assays that have been shown to correlate excellently with clinical classifications. We assessed PM5 at 5 stringencies with incorporation of 8 in silico tools. For each analysis, we quantified a positive likelihood ratio (pLR, true positive rate/false positive rate), the predictive value of PM5-lookup in ClinVar compared with the functional truthset. RESULTS: pLR was 16.3 (10.6-24.9) for variants for which there was exactly 1 additional colocated deleterious variant on ClinVar, and the variant under examination was equally or more damaging when analyzed using BLOSUM62. pLR was 71.5 (37.8-135.3) for variants for which there were 2 or more colocated deleterious ClinVar variants, and the variant under examination was equally or more damaging than at least 1 colocated variant when analyzed using BLOSUM62. CONCLUSION: These analyses support the graded use of PM5, with potential to use it at higher evidence weighting where more stringent criteria are met.


Asunto(s)
Variación Genética , Mutación Missense , Proteína BRCA1/genética , Codón , Predisposición Genética a la Enfermedad , Variación Genética/genética , Humanos , Proteína 2 Homóloga a MutS/genética , Mutación Missense/genética
7.
Genet Med ; 24(1): 41-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906457

RESUMEN

PURPOSE: The weight of the evidence to attach to observation of a novel rare missense variant in SDHB or SDHD in individuals with the rare neuroendocrine tumors, pheochromocytomas and paragangliomas (PCC/PGL), is uncertain. METHODS: We compared the frequency of SDHB and SDHD very rare missense variants (VRMVs) in 6328 and 5847 cases of PCC/PGL, respectively, with that of population controls to generate a pan-gene VRMV likelihood ratio (LR). Via windowing analysis, we measured regional enrichments of VRMVs to calculate the domain-specific VRMV-LR (DS-VRMV-LR). We also calculated subphenotypic LRs for variant pathogenicity for various clinical, histologic, and molecular features. RESULTS: We estimated the pan-gene VRMV-LR to be 76.2 (54.8-105.9) for SDHB and 14.8 (8.7-25.0) for SDHD. Clustering analysis revealed an SDHB enriched region (ɑɑ 177-260, P = .001) for which the DS-VRMV-LR was 127.2 (64.9-249.4) and an SDHD enriched region (ɑɑ 70-114, P = .000003) for which the DS-VRMV-LR was 33.9 (14.8-77.8). Subphenotypic LRs exceeded 6 for invasive disease (SDHB), head-and-neck disease (SDHD), multiple tumors (SDHD), family history of PCC/PGL, loss of SDHB staining on immunohistochemistry, and succinate-to-fumarate ratio >97 (SDHB, SDHD). CONCLUSION: Using methodology generalizable to other gene-phenotype dyads, the LRs relating to rarity and phenotypic specificity for a single observation in PCC/PGL of a SDHB/SDHD VRMV can afford substantial evidence toward pathogenicity.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Succinato Deshidrogenasa , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Mutación de Línea Germinal , Humanos , Fenotipo , Succinato Deshidrogenasa/genética , Virulencia
8.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909990

RESUMEN

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Asunto(s)
Anomalías Múltiples/patología , Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/patología , Metilación de ADN , Epigénesis Genética , Trastornos del Crecimiento/patología , Defectos del Tabique Interventricular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo , Anomalías Múltiples/genética , Estudios de Casos y Controles , Estudios de Cohortes , Anomalías Craneofaciales/genética , Femenino , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , Defectos del Tabique Interventricular/genética , Humanos , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/genética
9.
Atherosclerosis ; 325: 38-45, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892327

RESUMEN

BACKGROUND AND AIMS: We aimed to validate a nurse-led process using electronic health records to identify those at risk of familial hypercholesterolaemia (FH) for genetic diagnosis in primary care. METHODS: Those at risk of FH were identified using searches developed and refined locally and implemented in primary care by a trained nurse; they were invited for further assessment and genetic testing if indicated. Family members at risk of FH were identified and invited for cascade testing. RESULTS: In total 94,444 patient records were screened (expected prevalence of FH (1 in 250); 377). Of 176 records which already had a diagnostic for FH, 15 had been genetically confirmed and one was undergoing DNA testing. A further 572 (0.61%) were identified as high risk of FH. After desktop screening, 113 (15%) were invited for further assessment. Of these, 73 individuals attended the primary care clinic (64%) of whom 61 (54%) underwent proband genetic testing. Pathogenic variants were detected in 22 cases (36%) and variants of unknown significance in a further 4 cases; a total of 26 probands (43%) were therefore referred for family cascade testing. CONCLUSIONS: An optimised FH identification pathway, based on the NICE CG71 recommendations for systematic searching of primary care electronic health records, can be deployed successfully in primary care settings.


Asunto(s)
Hiperlipoproteinemia Tipo II , Medicina Estatal , Pruebas Genéticas , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiología , Hiperlipoproteinemia Tipo II/genética , Tamizaje Masivo , Atención Primaria de Salud
11.
Hum Mutat ; 42(5): 567-576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600052

RESUMEN

Amelogenesis imperfecta (AI) describes a heterogeneous group of developmental enamel defects that typically have Mendelian inheritance. Exome sequencing of 10 families with recessive hypomaturation AI revealed four novel and one known variants in the matrix metallopeptidase 20 (MMP20) gene that were predicted to be pathogenic. MMP20 encodes a protease that cleaves the developing extracellular enamel matrix and is necessary for normal enamel crystal growth during amelogenesis. New homozygous missense changes were shared between four families of Pakistani heritage (c.625G>C; p.(Glu209Gln)) and two of Omani origin (c.710C>A; p.(Ser237Tyr)). In two families of UK origin and one from Costa Rica, affected individuals were homozygous for the previously reported c.954-2A>T; p.(Ile319Phefs*19) variant. For each of these variants, microsatellite haplotypes appeared to exclude a recent founder effect, but elements of haplotype were conserved, suggesting more distant founding ancestors. New compound heterozygous changes were identified in one family of the European heritage: c.809_811+12delinsCCAG; p.(?) and c.1122A>C; p.(Gln374His). This report further elucidates the mutation spectrum of MMP20 and the probable impact on protein function, confirms a consistent hypomaturation phenotype and shows that mutations in MMP20 are a common cause of autosomal recessive AI in some communities.


Asunto(s)
Amelogénesis Imperfecta , Metaloproteinasa 20 de la Matriz , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Efecto Fundador , Homocigoto , Humanos , Metaloproteinasa 20 de la Matriz/genética , Linaje
12.
J Med Genet ; 58(5): 297-304, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33208383

RESUMEN

Accurate classification of variants in cancer susceptibility genes (CSGs) is key for correct estimation of cancer risk and management of patients. Consistency in the weighting assigned to individual elements of evidence has been much improved by the American College of Medical Genetics (ACMG) 2015 framework for variant classification, UK Association for Clinical Genomic Science (UK-ACGS) Best Practice Guidelines and subsequent Cancer Variant Interpretation Group UK (CanVIG-UK) consensus specification for CSGs. However, considerable inconsistency persists regarding practice in the combination of evidence elements. CanVIG-UK is a national subspecialist multidisciplinary network for cancer susceptibility genomic variant interpretation, comprising clinical scientist and clinical geneticist representation from each of the 25 diagnostic laboratories/clinical genetic units across the UK and Republic of Ireland. Here, we summarise the aggregated evidence elements and combinations possible within different variant classification schemata currently employed for CSGs (ACMG, UK-ACGS, CanVIG-UK and ClinGen gene-specific guidance for PTEN, TP53 and CDH1). We present consensus recommendations from CanVIG-UK regarding (1) consistent scoring for combinations of evidence elements using a validated numerical 'exponent score' (2) new combinations of evidence elements constituting likely pathogenic' and 'pathogenic' classification categories, (3) which evidence elements can and cannot be used in combination for specific variant types and (4) classification of variants for which there are evidence elements for both pathogenicity and benignity.


Asunto(s)
Genes Relacionados con las Neoplasias , Predisposición Genética a la Enfermedad/genética , Neoplasias/genética , Medicina Basada en la Evidencia , Variación Genética , Humanos
13.
J Med Genet ; 57(12): 829-834, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32170000

RESUMEN

Advances in technology have led to a massive expansion in the capacity for genomic analysis, with a commensurate fall in costs. The clinical indications for genomic testing have evolved markedly; the volume of clinical sequencing has increased dramatically; and the range of clinical professionals involved in the process has broadened. There is general acceptance that our early dichotomous paradigms of variants being pathogenic-high risk and benign-no risk are overly simplistic. There is increasing recognition that the clinical interpretation of genomic data requires significant expertise in disease-gene-variant associations specific to each disease area. Inaccurate interpretation can lead to clinical mismanagement, inconsistent information within families and misdirection of resources. It is for this reason that 'national subspecialist multidisciplinary meetings' (MDMs) for genomic interpretation have been articulated as key for the new NHS Genomic Medicine Service, of which Cancer Variant Interpretation Group UK (CanVIG-UK) is an early exemplar. CanVIG-UK was established in 2017 and now has >100 UK members, including at least one clinical diagnostic scientist and one clinical cancer geneticist from each of the 25 regional molecular genetics laboratories of the UK and Ireland. Through CanVIG-UK, we have established national consensus around variant interpretation for cancer susceptibility genes via monthly national teleconferenced MDMs and collaborative data sharing using a secure online portal. We describe here the activities of CanVIG-UK, including exemplar outputs and feedback from the membership.


Asunto(s)
Pruebas Genéticas , Variación Genética/genética , Genómica , Neoplasias/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Irlanda/epidemiología , Masculino , Neoplasias/epidemiología , Neoplasias/patología , Reino Unido/epidemiología
14.
Eur J Med Genet ; 63(4): 103798, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31655143

RESUMEN

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is an autosomal recessive condition characterized by distinct craniofacial features, multisystem congenital malformations and progressive fragility of connective tissues. It is caused by pathogenic variants in CHST14 and DSE genes. There are three reports of pathogenic variants in DSE in four mcEDS patients. In this study we provide clinical and molecular presentation of two new patients with DSE related mcEDS. Analysing clinical exome data, a homozygous pathogenic DSE variant, c.1150_1157del p.(Pro384Trpfs*9), was identified in a 32 year old man with bilateral congenital talipes equinovarus, characteristic facial features, myopia, hyperextensible skin at the elbows, significant palmar wrinkling, bilateral inguinal hernias and chronic leg, back and joint pain. Electron microscopical examination of skin biopsy showed changes consistent with mild compensatory elastic fibre hypertrophy and mildly loose collagen bundles. The variant is predicted to result in a frameshift and introduction of a premature termination codon in the final exon of the DSE gene, anticipated to lead to the loss of approximately 60% of the normal reading frame. The second patient has a phenotype consistent with previously reported cases of DSE associated musculocontractural EDS. A novel homozygous missense DSE variant of uncertain clinical significance was detected. This case study further delineates the DSE associated mcEDS phenotype and illustrates absence of major cutaneous, cardiovascular, renal and respiratory features, which supports previous suggestions that patients with DSE associated mcEDS present with a milder phenotype compared to those with CHST14 mutations.


Asunto(s)
Antígenos de Neoplasias/genética , Contractura/patología , Proteínas de Unión al ADN/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Mutación , Proteínas de Neoplasias/genética , Adulto , Variación Biológica Poblacional , Contractura/genética , Humanos , Masculino , Fenotipo
15.
Pediatr Dermatol ; 36(6): 906-908, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31576605

RESUMEN

Angiokeratoma corporis diffusum refers to symmetrical clusters of minute red papules in a "bathing trunk" distribution and is considered the cutaneous hallmark of Fabry disease. Acid sphingomyelinase deficiency is an autosomal recessive sphingolipidosis, which presents with massive hepatosplenomegaly, pulmonary infiltrates, and skeletal abnormalities. We present the unusual case of a 12-year-old girl with acid sphingomyelinase deficiency who developed characteristic lesions of angiokeratoma corporis diffusum.


Asunto(s)
Enfermedad de Fabry/diagnóstico , Enfermedad de Niemann-Pick Tipo A/diagnóstico , Niño , Dermoscopía , Diagnóstico Diferencial , Femenino , Humanos
18.
Hum Mutat ; 40(5): 619-630, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30740813

RESUMEN

The lipid phosphatase gene FIG4 is responsible for Yunis-Varón syndrome and Charcot-Marie-Tooth disease Type 4J, a peripheral neuropathy. We now describe four families with FIG4 variants and prominent abnormalities of central nervous system (CNS) white matter (leukoencephalopathy), with onset in early childhood, ranging from severe hypomyelination to mild undermyelination, in addition to peripheral neuropathy. Affected individuals inherited biallelic FIG4 variants from heterozygous parents. Cultured fibroblasts exhibit enlarged vacuoles characteristic of FIG4 dysfunction. Two unrelated families segregate the same G > A variant in the +1 position of intron 21 in the homozygous state in one family and compound heterozygous in the other. This mutation in the splice donor site of exon 21 results in read-through from exon 20 into intron 20 and truncation of the final 115 C-terminal amino acids of FIG4, with retention of partial function. The observed CNS white matter disorder in these families is consistent with the myelination defects in the FIG4 null mouse and the known role of FIG4 in oligodendrocyte maturation. The families described here the expanded clinical spectrum of FIG4 deficiency to include leukoencephalopathy.


Asunto(s)
Alelos , Enfermedades Desmielinizantes/diagnóstico , Enfermedades Desmielinizantes/genética , Flavoproteínas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Monoéster Fosfórico Hidrolasas/genética , Niño , Preescolar , Análisis Mutacional de ADN , Enfermedades Desmielinizantes/metabolismo , Fibroblastos/metabolismo , Genotipo , Humanos , Patrón de Herencia , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Linaje , Fenotipo
19.
Lancet ; 393(10173): 747-757, 2019 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-30712880

RESUMEN

BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.


Asunto(s)
Cariotipo Anormal/estadística & datos numéricos , Anomalías Congénitas/genética , Secuenciación del Exoma/estadística & datos numéricos , Desarrollo Fetal/genética , Feto/anomalías , Cariotipo Anormal/embriología , Aborto Eugénico/estadística & datos numéricos , Aborto Espontáneo/epidemiología , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/epidemiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Feto/diagnóstico por imagen , Humanos , Recién Nacido , Nacimiento Vivo/epidemiología , Masculino , Medida de Translucencia Nucal , Padres , Muerte Perinatal/etiología , Embarazo , Estudios Prospectivos , Mortinato/epidemiología , Secuenciación del Exoma/métodos
20.
Oral Dis ; 25(1): 182-191, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30095208

RESUMEN

OBJECTIVES: Variants in DLX3 cause tricho-dento-osseous syndrome (TDO, MIM #190320), a systemic condition with hair, nail and bony changes, taurodontism and amelogenesis imperfecta (AI), inherited in an autosomal dominant fashion. Different variants found within this gene are associated with different phenotypic presentations. To date, six different DLX3 variants have been reported in TDO. The aim of this paper was to explore and discuss three recently uncovered new variants in DLX3. SUBJECTS AND METHODS: Whole-exome sequencing identified a new DLX3 variant in one family, recruited as part of an ongoing study of genetic variants associated with AI. Targeted clinical exome sequencing of two further families revealed another new variant of DLX3 and complete heterozygous deletion of DLX3. For all three families, the phenotypes were shown to consist of AI and taurodontism, together with other attenuated features of TDO. RESULTS: c.574delG p.(E192Rfs*66), c.476G>T (p.R159L) and a heterozygous deletion of the entire DLX3 coding region were identified in our families. CONCLUSION: These previously unreported variants add to the growing literature surrounding AI, allowing for more accurate genetic testing and better understanding of the associated clinical consequences.


Asunto(s)
Amelogénesis Imperfecta/genética , Anomalías Craneofaciales/genética , Hipoplasia del Esmalte Dental/genética , Enfermedades del Cabello/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Femenino , Humanos , Masculino , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...