Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(14): e0254421, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862723

RESUMEN

In the oligotrophic oceans, key autotrophs depend on "helper" bacteria to reduce oxidative stress from hydrogen peroxide (H2O2) in the extracellular environment. H2O2 is also a ubiquitous stressor in freshwaters, but the effects of H2O2 on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring H2O2 in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) Microcystis in blooms, which influences toxin concentrations and human health impacts. However, how different strains of Microcystis respond to naturally occurring H2O2 concentrations and the microbes responsible for H2O2 decomposition in freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used metagenomics and metatranscriptomics to track the presence and expression of genes for H2O2 decomposition by microbes during a cyanobacterial bloom in western Lake Erie in the summer of 2014. katG encodes the key enzyme for decomposing extracellular H2O2 but was absent in most Microcystis cells. katG transcript relative abundance was dominated by heterotrophic bacteria. In axenic Microcystis cultures, an H2O2 scavenger (pyruvate) significantly improved growth rates of one toxic strain while other toxic and nontoxic strains were unaffected. These results indicate that heterotrophic bacteria play a key role in H2O2 decomposition in Microcystis blooms and suggest that their activity may affect the fitness of some Microcystis strains and thus the strain composition of Microcystis blooms but not along a toxic versus nontoxic dichotomy. IMPORTANCE Cyanobacterial harmful algal blooms (CHABs) threaten freshwater ecosystems globally through the production of toxins. Toxin production by cyanobacterial species and strains during CHABs varies widely over time and space, but the ecological drivers of the succession of toxin-producing species remain unclear. Hydrogen peroxide (H2O2) is ubiquitous in natural waters, inhibits microbial growth, and may determine the relative proportions of Microcystis strains during blooms. However, the mechanisms and organismal interactions involved in H2O2 decomposition are unexplored in CHABs. This study shows that some strains of bloom-forming freshwater cyanobacteria benefit from detoxification of H2O2 by associated heterotrophic bacteria, which may impact bloom development.


Asunto(s)
Cianobacterias , Microcystis , Catalasa/metabolismo , Cianobacterias/genética , Ecosistema , Floraciones de Algas Nocivas , Humanos , Peróxido de Hidrógeno/metabolismo , Lagos/microbiología , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo
3.
PLoS One ; 13(3): e0195112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29590198

RESUMEN

The bacterial phylum Verrucomicrobia was formally described two decades ago and originally believed to be a minor member of many ecosystems; however, it is now recognized as ubiquitous and abundant in both soil and aquatic systems. Nevertheless, knowledge of the drivers of its relative abundance and within-phylum habitat preferences remains sparse, especially in lake systems. Here, we documented the distribution of Verrucomicrobia in 12 inland lakes in Southeastern Michigan, a Laurentian Great Lake (Lake Michigan), and a freshwater estuary, which span a gradient in lake sizes, depths, residence times, and trophic states. A wide range of physical and geochemical parameters was covered by sampling seasonally from the surface and bottom of each lake, and by separating samples into particle-associated and free-living fractions. On average, Verrucomicrobia was the 4th most abundant phylum (range 1.7-41.7%). Fraction, season, station, and depth explained up to 70% of the variance in Verrucomicrobia community composition and preference for these habitats was phylogenetically conserved at the class-level. When relative abundance was linearly modeled against environmental data, Verrucomicrobia and non-Verrucomicrobia bacterial community composition correlated to similar quantitative environmental parameters, although there were lake system-dependent differences and > 55% of the variance remained unexplained. A majority of the phylum exhibited preference for the particle-associated fraction and two classes (Opitutae and Verrucomicrobiae) were identified to be more abundant during the spring season. This study highlights the high relative abundance of Verrucomicrobia in north temperate lake systems and expands insights into drivers of within-phylum habitat preferences of the Verrucomicrobia.


Asunto(s)
Organismos Acuáticos/microbiología , Ecosistema , Agua Dulce/microbiología , Lagos/microbiología , Verrucomicrobia/fisiología , Microbiología del Agua , Biodiversidad , Filogenia , ARN Ribosómico 16S , Estaciones del Año , Verrucomicrobia/clasificación
4.
PLoS One ; 12(10): e0183859, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29020009

RESUMEN

Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01) and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02), and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes) and resistance to foreign genetic elements (such as CRISPR-Cas systems). Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.


Asunto(s)
Eutrofización , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Microcystis/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Great Lakes Region , Metagenoma , Microcystis/aislamiento & purificación , Filogenia , Especificidad de la Especie
5.
Front Microbiol ; 8: 365, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337183

RESUMEN

Oligotyping is a computational method used to increase the resolution of marker gene microbiome studies. Although oligotyping can distinguish highly similar sequence variants, the resulting units are not necessarily phylogenetically and ecologically informative due to limitations of the selected marker gene. In this perspective, we examine how oligotyping data is interpreted in recent literature, and we illustrate some of the method's constraints with a case study of the harmful bloom-forming cyanobacterium Microcystis. We identified three Microcystis oligotypes from a western Lake Erie bacterial community 16S rRNA gene (V4 region) survey that had previously clustered into one OTU. We found the same three oligotypes and two additional sequence variants in 46 Microcystis cultures isolated from Michigan inland lakes spanning a trophic gradient. In Lake Erie, shifts in Microcystis oligotypes corresponded to spatial nutrient gradients and temporal transitions in bloom toxicity. In the cultures, Microcystis oligotypes showed preferential distributions for different trophic states, but genomic data revealed that the oligotypes identified in Lake Erie did not correspond to toxin gene presence. Thus, oligotypes could not be used for inferring toxic ecotypes. Most strikingly, Microcystis oligotypes were not monophyletic. Our study supports the utility of oligotyping for distinguishing sequence types along certain ecological features, while it stresses that 16S rRNA gene sequence types may not reflect ecologically or phylogenetically cohesive populations. Therefore, we recommend that studies employing oligotyping or related tools consider these caveats during data interpretation.

6.
Environ Microbiol ; 19(3): 1149-1162, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026093

RESUMEN

Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs. The bloom's progression revealed potential impacts to nc-bacterial diversity. Nc-bacterial evenness displayed linear, unimodal, or no response to algal pigment levels, depending on the taxonomic group. In addition, the bloom coincided with a large shift in nc-bacterial community composition. These shifts could be partitioned into components predicted by pH, chlorophyll a, temperature, and water mass movements. Actinobacteria OTUs showed particularly strong correlations to bloom dynamics. AcI-C OTUs became more abundant, while acI-A and acI-B OTUs declined during the bloom, providing evidence of niche partitioning at the sub-clade level. Thus, our observations in western Lake Erie support a link between CHABs and disturbances to bacterial community diversity and composition. Additionally, the short recovery of many taxa after the bloom indicates that bacterial communities may exhibit resilience to CHABs.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Cianobacterias/aislamiento & purificación , Floraciones de Algas Nocivas , Clorofila/metabolismo , Clorofila A , Cianobacterias/clasificación , Cianobacterias/genética , Humanos , Lagos/análisis , Lagos/microbiología , Movimientos del Agua
7.
Front Microbiol ; 7: 606, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199936

RESUMEN

Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA gene sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. However, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...