Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2334, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485722

RESUMEN

The ability to scale two-dimensional (2D) material thickness down to a single monolayer presents a promising opportunity to realize high-speed energy-efficient memristors. Here, we report an ultra-fast memristor fabricated using atomically thin sheets of 2D hexagonal Boron Nitride, exhibiting the shortest observed switching speed (120 ps) among 2D memristors and low switching energy (2pJ). Furthermore, we study the switching dynamics of these memristors using ultra-short (120ps-3ns) voltage pulses, a frequency range that is highly relevant in the context of modern complementary metal oxide semiconductor (CMOS) circuits. We employ statistical analysis of transient characteristics to gain insights into the memristor switching mechanism. Cycling endurance data confirms the ultra-fast switching capability of these memristors, making them attractive for next generation computing, storage, and Radio-Frequency (RF) circuit applications.

2.
Adv Mater ; 30(2)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29178141

RESUMEN

The interface between III-V and metal-oxide-semiconductor materials plays a central role in the operation of high-speed electronic devices, such as transistors and light-emitting diodes. The high-speed property gives the light-emitting diodes a high response speed and low dark current, and they are widely used in communications, infrared remote sensing, optical detection, and other fields. The rational design of high-performance devices requires a detailed understanding of the electronic structure at this interface; however, this understanding remains a challenge, given the complex nature of surface interactions and the dynamic relationship between the morphology evolution and electronic structures. Herein, in situ transmission electron microscopy is used to probe and manipulate the structural and electrical properties of ZrO2 films on Al2 O3 and InGaAs substrate at the atomic scale. Interfacial defects resulting from the spillover of the oxygen-atom conduction-band wavefunctions are resolved. This study unearths the fundamental defect-driven interfacial electric structure of III-V semiconductor materials and paves the way to future high-speed and high-reliability devices.

3.
J Phys Condens Matter ; 27(41): 415401, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26414778

RESUMEN

Formation of metal rich conductive filaments and their rearrangements determine the switching characteristics in HfO2 based resistive random access memory (RRAM) devices. The initiation of a filament formation process may occur either via aggregation of pre-existing vacancies randomly distributed in the oxide or via generation of new oxygen vacancies close to the pre-existing ones. We evaluate the feasibility of vacancy aggregation processes by calculating the structures and binding energies of oxygen vacancy aggregates consisting of 2, 3 and 4 vacancies in bulk monoclinic (m)-HfO2 using density functional theory (DFT). We demonstrate that formation of neutral oxygen vacancy aggregates is accompanied by small energy gain, which depends on the size and shape of the aggregate. In the most strongly bound configurations, vacancies are unscreened by Hf cations and form voids within the crystal, with the larger aggregates having larger binding energy per vacancy (-0.11 to -0.18 eV). The negatively charged di-vacancy was found to have similar binding energies to the neutral one, while the positively charged di-vacancy was found to be unstable. Thus aggregation process of either neutral or negatively charged oxygen vacancies is energetically feasible.

4.
Appl Spectrosc ; 69(2): 239-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25588191

RESUMEN

The advent and exponential growth of mobile computing has spurred greater emphasis on the adoption of III-V compound semiconductors in device architectures. The introduction of high charge carrier densities within InxGa1-xAs and the development of metrologies to quantitate the extent of doping have thus emerged as an urgent imperative. As an amphoteric dopant, Si begins to occupy anionic sites at high concentrations, thereby limiting the maximum carrier density that can be obtained upon Si doping of III-V semiconductors. Here, we present Raman results on sequentially doped In0.53Ga0.47As wherein sulfur monolayer doping is used to introduce additional carrier density to Si-doped samples. The sequential doping of Si and S allows for high carrier concentrations of up to 1.3 × 10(19) cm(-3) to be achieved without damaging the III-V lattice. The coupling of the plasmon in the doped samples to the longitudinal optic phonons allows Raman spectroscopy to serve as an excellent probe of the extent of dopant activation, charge carrier density, and the surface depletion region. In particular, the energy position of a high-frequency coupled mode (HFCM) that is detected above 400 cm(-1) is used to extract the free electron density in these samples. The extracted free electron densities are well correlated with measured sheet resistance values and the carrier densities deduced from Hall measurements.

5.
Phys Chem Chem Phys ; 16(14): 6539-43, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24569809

RESUMEN

We present a Raman spectroscopy study of electron-phonon coupling in In0.53Ga0.47As epilayers doped via the sulfur-monolayer doping method. A high-frequency coupled mode (HFCM) detected above 400 cm(-1) shifts with increasing charge carrier density and allows for extraction of the activated dopant concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...