Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(35): 12545-12558, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32690612

RESUMEN

Bile acids (BAs) comprise heterogenous amphipathic cholesterol-derived molecules that carry out physicochemical and signaling functions. A major site of BA action is the terminal ileum, where enterocytes actively reuptake BAs and express high levels of BA-sensitive nuclear receptors. BA pool size and composition are affected by changes in metabolic health, and vice versa. One of several factors that differentiate BAs is the presence of a hydroxyl group on C12 of the steroid ring. 12α-Hydroxylated BAs (12HBAs) are altered in multiple disease settings, but the consequences of 12HBA abundance are incompletely understood. We employed mouse primary ileum organoids to investigate the transcriptional effects of varying 12HBA abundance in BA pools. We identified Slc30a10 as one of the top genes differentially induced by BA pools with varying 12HBA abundance. SLC30A10 is a manganese efflux transporter critical for whole-body manganese excretion. We found that BA pools, especially those low in 12HBAs, induce cellular manganese efflux and that Slc30a10 induction by BA pools is driven primarily by lithocholic acid signaling via the vitamin D receptor. Administration of lithocholic acid or a vitamin D receptor agonist resulted in increased Slc30a10 expression in mouse ileum epithelia. These data demonstrate a previously unknown role for BAs in intestinal control of manganese homeostasis.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Íleon/metabolismo , Mucosa Intestinal/metabolismo , Ácido Litocólico/farmacología , Manganeso/metabolismo , Animales , Transporte Iónico/efectos de los fármacos , Ácido Litocólico/metabolismo , Ratones , Organoides/metabolismo , Receptores de Calcitriol/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Cachexia Sarcopenia Muscle ; 10(2): 455-475, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30932373

RESUMEN

BACKGROUND: Stimulation of ß2 -adrenoceptors can promote muscle hypertrophy and fibre type shift, and it can counteract atrophy and weakness. The underlying mechanisms remain elusive. METHODS: Fed wild type (WT), 2-day fasted WT, muscle-specific insulin (INS) receptor (IR) knockout (M-IR-/- ), and MKR mice were studied with regard to acute effects of the ß2 -agonist formoterol (FOR) on protein metabolism and signalling events. MKR mice express a dominant negative IGF1 receptor, which blocks both INS/IGF1 signalling. All received one injection of FOR (300 µg kg-1 subcutaneously) or saline. Skeletal muscles and serum samples were analysed from 30 to 240 min. For the study of chronic effects of FOR on muscle plasticity and function as well as intracellular signalling pathways, fed WT and MKR mice were treated with formoterol (300 µg kg-1  day-1 ) for 30 days. RESULTS: In fed and fasted mice, one injection of FOR inhibited autophagosome formation (LC3-II content, 65%, P ≤ 0.05) that was paralleled by an increase in serum INS levels (4-fold to 25-fold, P ≤ 0.05) and the phosphorylation of Akt (4.4-fold to 6.5-fold, P ≤ 0.05) and ERK1/2 (50% to two-fold, P ≤ 0.05). This led to the suppression (40-70%, P ≤ 0.05) of the master regulators of atrophy, FoxOs, and the mRNA levels of their target genes. FOR enhanced (41%, P ≤ 0.05) protein synthesis only in fed condition and stimulated (4.4-fold to 35-fold, P ≤ 0.05) the prosynthetic Akt/mTOR/p70S6K pathway in both fed and fasted states. FOR effects on Akt signalling during fasting were blunted in both M-IR-/- and MKR mice. Inhibition of proteolysis markers by FOR was prevented only in MKR mice. Blockade of PI3K/Akt axis and mTORC1, but not ERK1/2, in fasted mice also suppressed the acute FOR effects on proteolysis and autophagy. Chronic stimulation of ß2 -adrenoceptors in fed WT mice increased body (11%, P ≤ 0.05) and muscle (15%, P ≤ 0.05) growth and downregulated atrophy-related genes (30-40%, P ≤ 0.05), but these effects were abolished in MKR mice. Increases in muscle force caused by FOR (WT, 24%, P ≤ 0.05) were only partially impaired in MKR mice (12%, P ≤ 0.05), and FOR-induced slow-to-fast fibre type shift was not blocked at all in these animals. In MKR mice, FOR also restored the lower levels of muscle SDH activity to basal WT values and caused a marked reduction (57%, P ≤ 0.05) in the number of centrally nucleated fibers. CONCLUSIONS: NS/IGF1 signalling is necessary for the anti-proteolytic and hypertrophic effects of in vivo ß2 -adrenergic stimulation and appears to mediate FOR-induced enhancement of protein synthesis. INS/IGF1 signalling only partially contributes to gain in strength and does not mediate fibre type transition induced by FOR.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteostasis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Fuerza Muscular , Músculo Esquelético/fisiopatología , Fosfatidilinositol 3-Quinasas , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Cell Metab ; 27(4): 816-827.e4, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29576536

RESUMEN

Excess plasma triglycerides (TGs) are a key component of obesity-induced metabolic syndrome. We have shown that γ-secretase inhibitor (GSI) treatment improves glucose tolerance due to inhibition of hepatic Notch signaling but found additional Notch-independent reduction of plasma TG-rich lipoproteins (TRLs) in GSI-treated, as well as hepatocyte-specific, γ-secretase knockout (L-Ncst) mice, which suggested a primary effect on hepatocyte TRL uptake. Indeed, we found increased VLDL and LDL particle uptake in L-Ncst hepatocytes and Ncst-deficient hepatoma cells, in part through reduced γ-secretase-mediated low-density lipoprotein receptor (LDLR) cleavage and degradation. To exploit this novel finding, we generated a liver-selective Nicastrin ASO, which recapitulated glucose and lipid improvements of L-Ncst mice, with increased levels of hepatocyte LDLR. Collectively, these results identify the role of hepatic γ-secretase to regulate LDLR and suggest that liver-specific GSIs may simultaneously improve multiple aspects of the metabolic syndrome.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , LDL-Colesterol/sangre , VLDL-Colesterol/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/sangre , Síndrome Metabólico , Receptores de LDL/sangre , Triglicéridos/sangre , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Glucosa/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Hepatocitos/citología , Hepatocitos/metabolismo , Hígado/patología , Masculino , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/patología , Ratones , Ratones Endogámicos C57BL
4.
Am J Physiol Endocrinol Metab ; 313(2): E121-E133, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28377401

RESUMEN

Bile acids (BAs) are cholesterol derivatives that regulate lipid metabolism, through their dual abilities to promote lipid absorption and activate BA receptors. However, different BA species have varying abilities to perform these functions. Eliminating 12α-hydroxy BAs in mice via Cyp8b1 knockout causes low body weight and improved glucose tolerance. The goal of this study was to determine mechanisms of low body weight in Cyp8b1-/- mice. We challenged Cyp8b1-/- mice with a Western-type diet and assessed body weight and composition. We measured energy expenditure, fecal calories, and lipid absorption and performed lipidomic studies on feces and intestine. We investigated the requirement for dietary fat in the phenotype using a fat-free diet. Cyp8b1-/- mice were resistant to Western diet-induced body weight gain, hepatic steatosis, and insulin resistance. These changes were associated with increased fecal calories, due to malabsorption of hydrolyzed dietary triglycerides. This was reversed by treating the mice with taurocholic acid, the major 12α-hydroxylated BA species. The improvements in body weight and steatosis were normalized by feeding mice a fat-free diet. The effects of BA composition on intestinal lipid handling are important for whole body energy homeostasis. Thus modulating BA composition is a potential tool for obesity or diabetes therapy.


Asunto(s)
Dieta Occidental/efectos adversos , Grasas de la Dieta/metabolismo , Hígado Graso/genética , Absorción Intestinal/genética , Metabolismo de los Lípidos/genética , Esteroide 12-alfa-Hidroxilasa/genética , Aumento de Peso/genética , Animales , Ácidos y Sales Biliares/metabolismo , Dieta Alta en Grasa , Hígado Graso/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Biogerontology ; 16(3): 329-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25559404

RESUMEN

Sarcopenia, the progressive loss of muscle mass and strength, is a phenomenon characterizing human aging whose etiology is still not clear. While there is increasing evidence for the influence of inter-muscular adipose tissue infiltration in the development of sarcopenia, much less is known about a possible role for intra-muscular triglycerides (IMTG). IMTG accumulate in form of lipid droplets decorated by proteins such as Perilipins (Plins). In skeletal muscle the most abundant are Plin2 and Plin5. In this study we compared the expression of these two Plins in Vastus lateralis muscle samples of subjects of different age, both healthy donors (HD) and patients with limited lower limb mobility (LLMI). These latter are characterized by a condition of chronic physical inactivity. Plin2 expression resulted higher in old age for both HD and LLMI patients, while Plin5 slightly decreased only in LLMI patients. Moreover, in these patients, only Plin2 was associated with the decrease of muscle strength and the expression of factors related to muscle atrophy (MuRF1, Atrogin and p53). An increase in Plin2 and a concomitant decrease of Plin5 was also observed when we considered animal model of disuse-induced muscle atrophy. As a whole, these data indicate that Plin2 and Plin5 have a different expression pattern during muscle aging and inactivity, and only Plin2 appears to be associated with functional alterations of the muscle.


Asunto(s)
Envejecimiento/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas/metabolismo , Sarcopenia/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Animales , Biopsia , Estudios de Casos y Controles , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Limitación de la Movilidad , Modelos Animales , Desnervación Muscular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fuerza Muscular/fisiología , Músculo Esquelético/patología , Atrofia Muscular/genética , Perilipina-2 , Perilipina-5 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas/genética , Sarcopenia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
PLoS One ; 9(6): e100745, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959824

RESUMEN

BACKGROUND: Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/-) to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD), OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.


Asunto(s)
Haptoglobinas/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Estrés Oxidativo , Animales , Autofagia , Dieta Alta en Grasa , Expresión Génica , Haptoglobinas/genética , Lisosomas , Masculino , Ratones Noqueados , Mitocondrias/metabolismo , Atrofia Muscular/patología , Obesidad/metabolismo , Oxidación-Reducción , Condicionamiento Físico Animal , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina/metabolismo
8.
J Clin Invest ; 124(6): 2410-24, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24789905

RESUMEN

Cardiomyocyte proteostasis is mediated by the ubiquitin/proteasome system (UPS) and autophagy/lysosome system and is fundamental for cardiac adaptation to both physiologic (e.g., exercise) and pathologic (e.g., pressure overload) stresses. Both the UPS and autophagy/lysosome system exhibit reduced efficiency as a consequence of aging, and dysfunction in these systems is associated with cardiomyopathies. The muscle-specific ubiquitin ligase atrogin-1 targets signaling proteins involved in cardiac hypertrophy for degradation. Here, using atrogin-1 KO mice in combination with in vivo pulsed stable isotope labeling of amino acids in cell culture proteomics and biochemical and cellular analyses, we identified charged multivesicular body protein 2B (CHMP2B), which is part of an endosomal sorting complex (ESCRT) required for autophagy, as a target of atrogin-1-mediated degradation. Mice lacking atrogin-1 failed to degrade CHMP2B, resulting in autophagy impairment, intracellular protein aggregate accumulation, unfolded protein response activation, and subsequent cardiomyocyte apoptosis, all of which increased progressively with age. Cellular proteostasis alterations resulted in cardiomyopathy characterized by myocardial remodeling with interstitial fibrosis, with reduced diastolic function and arrhythmias. CHMP2B downregulation in atrogin-1 KO mice restored autophagy and decreased proteotoxicity, thereby preventing cell death. These data indicate that atrogin-1 promotes cardiomyocyte health through mediating the interplay between UPS and autophagy/lysosome system and its alteration promotes development of cardiomyopathies.


Asunto(s)
Autofagia/fisiología , Cardiomiopatías/etiología , Proteínas Musculares/deficiencia , Proteínas Ligasas SKP Cullina F-box/deficiencia , Animales , Apoptosis/fisiología , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Estrés del Retículo Endoplásmico , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/fisiología , Taquicardia Ventricular/etiología , Ubiquitina/metabolismo , Respuesta de Proteína Desplegada
9.
Cardiovasc Res ; 97(2): 240-50, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23090606

RESUMEN

AIMS: Increased cardiac sympathetic neuron (SN) activity has been associated with pathologies such as heart failure and hypertrophy, suggesting that cardiac innervation regulates cardiomyocyte trophism. Whether continuous input from the SNs is required for the maintenance of the cardiomyocyte size has not been determined thus far. METHODS AND RESULTS: To address the role of cardiac innervation in cardiomyocyte size regulation, we monitored the effect of pharmacological sympathetic denervation in mice on cardiac structure, function, and signalling from 24 h to 30 days in the absence of other pathological stimuli. SN ablation caused an immediate reduction in the cardiomyocyte size with minimal consequences on the resting contractile function. Atrophic remodelling was mediated by the ubiquitin-proteasome system through FOXO-dependent early induction of the muscle-specific E3 ubiquitin ligases Atrogin-1/MAFbx and MuRF1, which was followed by activation of the autophagy-lysosome system. MuRF1 was found to be determinant in denervation atrophy as remodelling did not develop in denervated MuRF1 knock-out (KO) hearts. These effects were caused by decreased basal stimulation of cardiomyocyte ß2-adrenoceptor (AR), as atrophy was prevented by treatment of denervated mice with the ß2-AR agonist clenbuterol. Consistent with these data, we also observed that ß2-AR KO mice showed cardiac atrophy at rest. CONCLUSION: Cardiac SNs are strong regulators of the cardiomyocyte size via ß2-AR-dependent repression of proteolysis, demonstrating that the neuro-cardiac axis operates constitutively for the determination of the physiological cardiomyocyte size. These results are of great clinical relevance given the role of ß-AR in cardiovascular diseases and their modulation in therapy.


Asunto(s)
Corazón/inervación , Miocitos Cardíacos/patología , Proteínas/metabolismo , Receptores Adrenérgicos beta 2/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Atrofia , Autofagia , Células Cultivadas , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/fisiología , Norepinefrina/farmacología , Proteínas Ligasas SKP Cullina F-box/fisiología , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/fisiología
10.
Am J Physiol Cell Physiol ; 302(3): C587-96, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22094330

RESUMEN

Loss of muscle mass occurs in a variety of diseases including cancer, chronic heart failure, AIDS, diabetes, and renal failure, often aggravating pathological progression. The atrophy process is controlled by a transcriptional program that regulates the expression of a subset of genes named atrophy-related genes. The Forkhead Box O (FoxO) family of transcription factors plays a critical role in the atrophy program being sufficient and necessary for the expression of rate-limiting enzymes of ubiquitin-proteasome and autophagy-lysosome systems. Therefore, a fine regulation of FoxOs is critical to avoid excessive proteolysis and cachexia. FoxO activity can be modulated by different mechanisms including phosphorylation, acetylation, ubiquitination, and glycosylation. Here we show that FoxO3 is progressively acetylated during denervation and concomitantly atrogin-1, the bona fide FoxO3 target, is downregulated. FoxO3 interacts with the histone acetyl-transferase p300, and its acetylation causes cytosolic relocalization and degradation. Several lysine residues of FoxOs are known to be acetylated. To identify which lysines are critical for FoxO3 activity we have generated different FoxO3 mutants that either mimic or prevent lysine acetylation. We found that FoxO3 mutants that mimic acetylation show a decrease of transcriptional activity and cytosolic localization. Importantly, acetylation induces FoxO3 degradation via proteasome system. Between the different lysines, lysine 262 is critical for translocation of FoxO3. In conclusion, we provide evidence that FoxO3 activity is negatively modulated by acetylation and ubiquitination in a time-dependent and coordinated manner. This fine-tuning mechanism of FoxO3 regulation may be important to prevent excessive muscle loss and can be used as a therapeutic approach to counteract muscle wasting.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Desnervación Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Acetilación , Animales , Células Cultivadas , Citosol , Femenino , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Expresión Génica , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/biosíntesis , Músculo Esquelético/inervación , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , Proteínas Ligasas SKP Cullina F-box/biosíntesis , Transducción de Señal , Activación Transcripcional , Ubiquitinación , Factores de Transcripción p300-CBP/metabolismo
11.
Autophagy ; 7(12): 1415-23, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22024752

RESUMEN

Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1­/­) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1­/­ mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1­/­ muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.


Asunto(s)
Autofagia , Colágeno Tipo VI/deficiencia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Condicionamiento Físico Animal , Animales , Colágeno Tipo VI/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/ultraestructura , Factores de Tiempo , Síndrome Debilitante/patología
12.
Nat Med ; 16(11): 1313-20, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21037586

RESUMEN

Autophagy is crucial in the turnover of cell components, and clearance of damaged organelles by the autophagic-lysosomal pathway is essential for tissue homeostasis. Defects of this degradative system have a role in various diseases, but little is known about autophagy in muscular dystrophies. We have previously found that muscular dystrophies linked to collagen VI deficiency show dysfunctional mitochondria and spontaneous apoptosis, leading to myofiber degeneration. Here we demonstrate that this persistence of abnormal organelles and apoptosis are caused by defective autophagy. Skeletal muscles of collagen VI-knockout (Col6a1(-/-)) mice had impaired autophagic flux, which matched the lower induction of beclin-1 and BCL-2/adenovirus E1B-interacting protein-3 (Bnip3) and the lack of autophagosomes after starvation. Forced activation of autophagy by genetic, dietary and pharmacological approaches restored myofiber survival and ameliorated the dystrophic phenotype of Col6a1(-/-) mice. Furthermore, muscle biopsies from subjects with Bethlem myopathy or Ullrich congenital muscular dystrophy had reduced protein amounts of beclin-1 and Bnip3. These findings indicate that defective activation of the autophagic machinery is pathogenic in some congenital muscular dystrophies.


Asunto(s)
Autofagia , Colágeno Tipo VI/metabolismo , Fibras Musculares Esqueléticas/patología , Distrofias Musculares/patología , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Western Blotting , Núcleo Celular/metabolismo , Colágeno Tipo VI/deficiencia , Diafragma/patología , Diafragma/ultraestructura , Humanos , Etiquetado Corte-Fin in Situ , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...