Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555550

RESUMEN

Plant biostimulants are formulations that are experiencing great success from the perspective of sustainable agriculture. In this work, we evaluated the effect derived from the application of a biostimulant based on algae and yeast extracts (Expando®) on the agronomic yield and nutraceutical profile of two different cultivars ("Sugar Time" and "West Rose") of Prunus persica (peach). Although, at the agronomic level, significant effects on production yields were not recorded, the biostimulant was able to reduce the ripening time, increase the fruit size, and make the number of harvestable fruits homogeneous. From a nutraceutical point of view, our determinations via spectrophotometric (UV/Vis) and chromatographic (HPLC-DAD-MS/MS) analysis showed that the biostimulant was able to boost the content of bioactive compounds in both the pulp (5.0 L/ha: +17%; 4.0 L/ha: +12%; 2.5 L/ha: +11%) and skin (4.0 L/ha: +38%; 2.5 L/ha: +15%). These changes seem to follow a dose-dependent effect, also producing attractive effects on the antioxidant properties of the fruits harvested from the treated trees. In conclusion, the biostimulant investigated in this work proved to be able to produce more marketable fruit in a shorter time, both from a pomological and a functional point of view.


Asunto(s)
Prunus persica , Algas Marinas , Antioxidantes/química , Prunus persica/química , Frutas/química , Espectrometría de Masas en Tándem , Fitoquímicos/análisis , Extractos Vegetales/química
3.
Front Bioeng Biotechnol ; 10: 1005960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204466

RESUMEN

2-Phenylethanol (2-PE) is a rose-scented aromatic compound, with broad application in cosmetic, pharmaceutical, food and beverage industries. Many plants naturally synthesize 2-PE via Shikimate Pathway, but its extraction is expensive and low-yielding. Consequently, most 2-PE derives from chemical synthesis, which employs petroleum as feedstock and generates unwanted by products and health issues. The need for "green" processes and the increasing public demand for natural products are pushing biotechnological production systems as promising alternatives. So far, several microorganisms have been investigated and engineered for 2-PE biosynthesis, but a few studies have focused on autotrophic microorganisms. Among them, the prokaryotic cyanobacteria can represent ideal microbial factories thanks to their ability to photosynthetically convert CO2 into valuable compounds, their minimal nutritional requirements, high photosynthetic rate and the availability of genetic and bioinformatics tools. An engineered strain of Synechococcus elongatus PCC 7942 for 2-PE production, i.e., p120, was previously published elsewhere. The strain p120 expresses four heterologous genes for the complete 2-PE synthesis pathway. Here, we developed a combined approach of metabolite doping and metabolic engineering to improve the 2-PE production kinetics of the Synechococcus elongatus PCC 7942 p120 strain. Firstly, the growth and 2-PE productivity performances of the p120 recombinant strain were analyzed to highlight potential metabolic constraints. By implementing a BG11 medium doped with L-phenylalanine, we covered the metabolic burden to which the p120 strain is strongly subjected, when the 2-PE pathway expression is induced. Additionally, we further boosted the carbon flow into the Shikimate Pathway by overexpressing the native Shikimate Kinase in the Synechococcus elongatus PCC 7942 p120 strain (i.e., 2PE_aroK). The combination of these different approaches led to a 2-PE yield of 300 mg/gDW and a maximum 2-PE titer of 285 mg/L, 2.4-fold higher than that reported in literature for the p120 recombinant strain and, to our knowledge, the highest recorded for photosynthetic microorganisms, in photoautotrophic growth condition. Finally, this work provides the basis for further optimization of the process aimed at increasing 2-PE productivity and concentration, and could offer new insights about the use of cyanobacteria as appealing microbial cell factories for the synthesis of aromatic compounds.

4.
Pharmaceutics ; 14(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36145620

RESUMEN

Biomedical implants, an essential part of the medical treatments, still suffer from bacterial infections that hamper patients' recovery and lives. Antibiotics are widely used to cure those infections but brought antibiotic resistance. Essential oils (EOs) demonstrate excellent antimicrobial activity and low resistance development risk. However, EO application in medicine is still quite scarce and almost no research work considers its use in combination with bioresorbable biomaterials, such as the poly(ε-caprolactone) (PCL) polymer. This work aimed to combine the antibacterial properties of EOs and their components, particularly eugenol and cinnamon oil, against Staphylococcus aureus, S. epidermidis and Escherichia coli, with those of PCL for medical applications in which good tissue regeneration and antimicrobial effects are required. The PCL porous scaffolds, added with increasing (from 30% to 50%) concentrations of eugenol and cinnamon oil, were characterized by square-shaped macropores. Saos-2 cells' cell viability/proliferation was hampered by 40 and 50% EO-enriched PCL, whereas no cytotoxic effect was recorded for both 30% EO-added PCL and pure-PCL. The antibacterial tests revealed the presence of a small inhibition halo around the 30% eugenol and cinnamon oil-functionalized PCL scaffolds only for staphylococci, whereas a significant decrease on both adherent and planktonic bacteria was recorded for all the three microorganisms, thus proving that, even if the EOs are only in part released by the EO-added PCL scaffolds, an anti-adhesive feature is anyway achieved. The scaffold will have the ability to support new tissue formation and simultaneously will be able to prevent post-surgical infection. This research shows the great potential in the use of EOs or their single components, at low concentrations, for biomaterial functionalization with enhanced anti-bacterial and biointegration properties.

5.
Antioxidants (Basel) ; 11(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139843

RESUMEN

In this study, the phytochemical profile and the antioxidative properties of Eugenia involucrata fruits were evaluated. Spectrophotometric assays indicated that these berries are a rich source of polyphenols with very high radical-scavenging and metal-reducing activities. High-performance liquid chromatography-Orbitrap analysis was able to carry out the annotation of 36 different compounds, mainly belonging to the flavonol, flavan-3-ol, and anthocyanin families. Antioxidant activity of the fruit extract was evaluated in a cell-based lipid peroxidation model. Obtained data showed that the extract, at very low concentration, was able to prevent oxidative damage in HepG2 cells exposed to oxidative stimuli. Moreover, the evaluation of the gene expression of the most important antioxidant enzymes suggested that the observed antioxidant protection in cells also involves an improvement in enzymatic antioxidant defenses. Finally, the collected data show that E. involucrata fruits are a good source of natural antioxidant molecules and provide evidence of their potential application in the nutraceutical field.

6.
Antioxidants (Basel) ; 11(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35204297

RESUMEN

Phytotherapy is based on the use of plants to prevent or treat human and animal diseases. Recently, the use of essential oils and polyphenol-enriched extracts is also rapidly increasing in the aquaculture sector as a means of greater industrial and environmental sustainability. Previous studies assessed the antibacterial and antiparasitic effects of these bioactive compounds on fish. However, studies on the modulation of oxidative stress biomarkers are still scant to date. Thus, in this study, the modulation of antioxidant defense against oxidative stress exerted by fish diets supplemented with a basil supercritical extract (F1-BEO) was assessed in rainbow trout Oncorhynchus mykiss. The F1-BEO extracted with supercritical fluid extraction was added to the commercial feed flour (0.5, 1, 2, 3% w/w) and mixed with fish oil to obtain a suitable compound for pellet preparation. Fish were fed for 30 days. The levels of stress biomarkers such as superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, glyoxalase I, glyoxalase II, lactate dehydrogenase, glutathione and malondialdehyde showed a boost in the antioxidant pathway in fish fed with a 0.5% F1-BEO-supplemented diet. Higher F1-BEO supplementation led to a failure of activity of several enzymes and the depletion of glutathione levels. Malondialdehyde concentration suggests a sufficient oxidative stress defense against lipid peroxidation in all experimental groups, except for a 3% F1-BEO-supplemented diet (liver 168.87 ± 38.79 nmol/mg prot; kidney 146.86 ± 23.28 nmol/mg prot), compared to control (liver 127.76 ± 18.15 nmol/mg prot; kidney 98.68 ± 15.65 nmol/mg prot). Our results suggest supplementing F1-BEO in fish diets up to 0.5% to avoid potential oxidative pressure in farmed trout.

7.
Food Chem ; 380: 132137, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35093655

RESUMEN

This study evaluated the phytochemical profile and antioxidative properties of the edible and non-edible portions of black sapote. The phytochemical analysis highlighted the presence of several bioactive compounds, differently distributed among peel, pulp and seeds. In particular, the peel resulted rich of flavan-3-ols and proanthocyanidins, whereas seeds contained high amount of organic acids, including ferulic, citric and sinapic acids. Concerning functional properties, both edible and non-edible portions showed a significant prevention of lipid peroxidation in a cell-based model. Moreover, the results suggested that the antioxidant protection involved both redox active properties and gene expression modulation. Concerning redox active properties, peel extracts showed an antioxidant activity 7/12-fold higher than the edible portion, while seed extracts were more active in increasing catalase gene expression. The obtained results confirmed that black sapote is a good source of antioxidant phytochemicals and its non-edible portions have a great potential in the production of functional foods and supplements.


Asunto(s)
Antioxidantes , Diospyros , Fitoquímicos , Extractos Vegetales , Polifenoles
8.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576159

RESUMEN

Melatonin is a ubiquitous indolamine, largely investigated for its key role in the regulation of several physiological processes in both animals and plants. In the last century, it was reported that this molecule may be produced in high concentrations by several species belonging to the plant kingdom and stored in specialized tissues. In this review, the main information related to the chemistry of melatonin and its metabolism has been summarized. Furthermore, the biosynthetic pathway characteristics of animal and plant cells have been compared, and the main differences between the two systems highlighted. Additionally, in order to investigate the distribution of this indolamine in the plant kingdom, distribution cluster analysis was performed using a database composed by 47 previously published articles reporting the content of melatonin in different plant families, species and tissues. Finally, the potential pharmacological and biostimulant benefits derived from the administration of exogenous melatonin on animals or plants via the intake of dietary supplements or the application of biostimulant formulation have been largely discussed.


Asunto(s)
Melatonina/metabolismo , Plantas/metabolismo , Animales , Análisis por Conglomerados , Suplementos Dietéticos , Indoles/metabolismo
9.
Plants (Basel) ; 10(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34451578

RESUMEN

An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.

10.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34439477

RESUMEN

Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.

11.
Front Microbiol ; 12: 674639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367082

RESUMEN

Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.

12.
Plant Physiol Biochem ; 166: 1076-1086, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34298322

RESUMEN

Recently, biostimulants have been used in sustainable agriculture as priming agents able to increase crop tolerance to abiotic stressors. Here, a soil application of GHI_16_VHL, a plant protein hydrolysate-based biostimulant, was tested for its capability to mitigate severe water stress effects on Capsicum annuum at flowering time. The biostimulant influence on plant physiological status was monitored upon stress and its relief, by measuring chlorophyll levels, stomatal density, stem water potential, leaf gas exchanges and plant growth. Moreover, leaf osmoregulation and oxidative stress levels were also evaluated by quantifying free proline, total non-structural carbohydrates (NSC), ROS-scavenging activity and H2O2 level. Although biostimulant-primed plants showed a quicker decrease of stem water potential with respect to untreated plants upon drought imposition, they recovered faster probably due to the higher leaf osmolyte accumulation, namely NSC during drought. Moreover, leaf gas exchange recovery was prompted in biostimulant-treated plants, which showed an incremented stomatal density and the same chlorophyll level of well-watered plants at the end of the recovery phase. Hydrogen peroxide level was significantly lower during stress and early recovery in biostimulant primed plants, probably due to the higher catalase activity in treated plants before drought or to the higher level of non-enzymatic antioxidant scavengers in primed stressed plants. Finally, the biostimulant priming increased aboveground relative growth rate and final fruit yield of stressed plants. Taken together, our data suggest that the biostimulant priming treatment promotes a faster and more efficient plant recovery after drought.


Asunto(s)
Capsicum , Sequías , Clorofila , Peróxido de Hidrógeno , Hidrolisados de Proteína
13.
Sci Rep ; 11(1): 354, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432010

RESUMEN

Roots have important roles for plants to withstand adverse environmental conditions, including salt stress. Biostimulant application was shown to enhance plant resilience towards abiotic stresses. Here, we studied the effect of a tannin-based biostimulant on tomato (Solanum lycopersicum L.) grown under salt stress conditions. We investigated the related changes at both root architecture (via imaging and biometric analysis) and gene expression (RNA-Seq/qPCR) levels. Moreover, in order to identify the main compounds potentially involved in the observed effects, the chemical composition of the biostimulant was evaluated by UV/Vis and HPLC-ESI-Orbitrap analysis. Sixteen compounds, known to be involved in root development and having a potential antioxidant properties were identified. Significant increase of root weight (+ 24%) and length (+ 23%) was observed when the plants were grown under salt stress and treated with the biostimulant. Moreover, transcriptome analysis revealed that the application of the biostimulant upregulated 285 genes, most of which correlated to root development and salt stress tolerance. The 171 downregulated genes were mainly involved in nutrient uptake. These data demonstrated that the biostimulant is able not only to restore root growth in salty soils, but also to provide the adequate plant nourishment by regulating the expression of essential transcription factors and stress responsive genes.


Asunto(s)
Raíces de Plantas/efectos de los fármacos , Salinidad , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/fisiología , Taninos/farmacología , Adaptación Fisiológica/efectos de los fármacos , Perfilación de la Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Taninos/química
14.
Nat Prod Res ; 35(22): 4621-4626, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31795749

RESUMEN

Amaranthus spp. (Amaranthaceae family), known as amaranth, are plants native of Central America, today produced in many parts of the world. due to their popularity popular as a health food. Because of its composition, amaranth can be considered to be attractive not only as a food but also for pharmaceutical and cosmetics uses. To date, antifungal activity of amaranth extracts has not been totally investigated, therefore the scope of this study was to evaluate the antifungal effect of the apolar fraction from Amaranthus cruentus L. seeds extract, alone and in association with antifungal drugs terbinafine, a common antifungal agent, which itself has only fungistatic effect on Candida albicans strains without exerting fungicidal activity. Our results demonstrate that this amaranth oil in combination with terbinafine has synergic fungistatic and fungicidal activity, with FICI of 0.466 and 0.496, respectively. No fungistatic and fungicidal activity of terbinafine alone at concentrations up to 64 µg/mL and amaranth oil alone at concentrations up to 2000 µg/mL, against all tested C. albicans strains, were observed. does not show activity towards Candida albicans strains but it can effectively potentiate the antifungal activity of terbinafine, a common antifungal agent which itself This result suggests the possible application of amaranth oil in the preparation of formulations with terbinafine for topical use.


Asunto(s)
Candida albicans , Candida , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Aceites de Plantas/farmacología , Semillas
15.
Biomolecules ; 10(12)2020 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322680

RESUMEN

Plant biostimulants are under investigation as innovative products to improve plant production and fruit quality, without resulting in environmental and food contaminations. Here, the effects of the application of Expando, a biostimulant based on seaweed and yeast extracts, on plant productivity, fruit ripening times, and fruit quality of Solanum lycopersicum var. Micro-Tom were evaluated. After biostimulant treatment, a two-week reduction of ripening times and a concomitant enhancement of the production percentage during the earliest ripening times, in terms of both fruit yield (+110%) and size (+85%), were observed. Concerning fruit quality, proximate analysis showed that tomatoes treated with the biostimulant had better nutritional composition compared to untreated samples, since both the quality of unsatured fatty acids (C16:3ω3: +328%; C18:2ω6: -23%) and micronutrients essential for human health (Fe: +14%; Cu: +21%; Zn: +24%) were increased. From a nutraceutical point of view, despite strong changes in bioactive compound profile not being observed, an increase of the antioxidant properties was recorded in fruits harvested by plants treated with the biostimulant (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS): +38%; 2,2-diphenyl-1-picrylhydrazyl (DPPH): +11%). In conclusion, the biostimulant application was able to reduce the ripening times and fruit size, while slightly increasing nutritional and nutraceutical values, leading to more marketable tomato fruits.


Asunto(s)
Frutas/crecimiento & desarrollo , Algas Marinas/química , Solanum lycopersicum/crecimiento & desarrollo , Levaduras/química , Antioxidantes/análisis , Benzotiazoles/química , Compuestos de Bifenilo/química , Frutas/anatomía & histología , Minerales/análisis , Fitoquímicos/análisis , Picratos/química , Polifenoles/análisis , Ácidos Sulfónicos/química
16.
Plants (Basel) ; 9(10)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023253

RESUMEN

Soybean (Glycine max Merr.) is a worldwide important legume crop, whose growth and yield are negatively affected by heat stress at germination time. Here, we tested the role of a biostimulant based on lignin derivatives, plant-derived amino acids, and molybdenum in enhancing soybean heat stress tolerance when applied on seeds. After treatment with the biostimulant at 35 °C, the seed biometric parameters were positively influenced after 24 h, meanwhile, germination percentage was increased after 72 h (+10%). RNA-Seq analyses revealed a modulation of 879 genes (51 upregulated and 828 downregulated) in biostimulant-treated seeds as compared with the control, at 24 h after incubation at 35 °C. Surprisingly, more than 33% of upregulated genes encoded for ribosomal RNA (rRNA) methyltransferases and proteins involved in the ribosome assembly, acting in a specific protein network. Conversely, the downregulated genes were involved in stress response, hormone signaling, and primary metabolism. Finally, from a biochemical point of view, the dramatic H2O2 reduction 40%) correlated to a strong increase in non-protein thiols (+150%), suggested a lower oxidative stress level in biostimulant-treated seeds, at 24 h after incubation at 35 °C. Our results provide insights on the biostimulant mechanism of action and on its application for seed treatments to improve heat stress tolerance during germination.

17.
Planta Med ; 86(18): 1363-1374, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32937663

RESUMEN

Zika virus, an arthropod-borne flavivirus, is an emerging healthcare threat worldwide. Zika virus is responsible for severe neurological effects, such as paralytic Guillain-Barrè syndrome, in adults, and also congenital malformations, especially microcephaly. No specific antiviral drugs and vaccines are currently available, and treatments are palliative, but medicinal plants show great potential as natural sources of anti-Zika phytochemicals. This study deals with the investigation of the composition, cytotoxicity, and anti-Zika activity of Punica granatum leaf ethanolic extract, fractions, and phytoconstituents. P. granatum leaves were collected from different areas in Italy and Greece in different seasons. Crude extracts were analyzed and fractionated, and the pure compounds were isolated. The phytochemical and biomolecular fingerprint of the pomegranate leaves was determined. The antiviral activities of the leaf extract, fractions, and compounds were investigated against the MR766 and HPF2013 Zika virus strains in vitro. Both the extract and its fractions were found to be active against Zika virus infection. Of the compounds isolated, ellagic acid showed particular anti-Zika activities, with EC50 values of 30.86 µM for MR766 and 46.23 µM for HPF2013. The mechanism of action was investigated using specific antiviral assays, and it was demonstrated that ellagic acid was primarily active as it prevented Zika virus infection and was able to significantly reduce Zika virus progeny production. Our data demonstrate the anti-Zika activity of pomegranate leaf extract and ellagic acid for the first time. These findings identify ellagic acid as a possible anti-Zika candidate compound that can be used for preventive and therapeutic interventions.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Ácido Elágico/farmacología , Humanos , Fitoquímicos , Granada (Fruta) , Infección por el Virus Zika/tratamiento farmacológico
18.
Antioxidants (Basel) ; 9(8)2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32748847

RESUMEN

Squalene (SQ) is a natural triterpene widely distributed in nature. It is a metabolic intermediate of the sterol biosynthetic pathway and represents a possible target in different metabolic and oxidative stress-related disorders. Growing interest has been focused on SQ's antioxidant properties, derived from its chemical structure. Strong evidence provided by ex vivo models underline its scavenging activity towards free radicals, whereas only a few studies have highlighted its effect in cellular models of oxidative stress. Given the role of unbalanced free radicals in both the onset and progression of several cardiovascular diseases, an in depth evaluation of SQ's contribution to antioxidant defense mechanisms could represent a strategic approach in dealing with these pathological conditions. At present experimental results overall show a double-edged sword role of squalene in cardiovascular diseases and its function has to be better elucidated in order to establish intervention lines focused on its features. This review aims to summarize current knowledge about endogenous and exogenous sources of SQ and to point out the controversial role of SQ in cardiovascular physiology.

19.
Front Plant Sci ; 11: 836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625226

RESUMEN

Seed enhancement technologies have the potential to improve germination and seedling growth under environmental stress. The effects of KIEM®, an innovative biostimulant based on lignin derivatives and containing plant-derived amino acids and molybdenum, were investigated on cucumber (Cucumis sativus L.) seed germination. To determine the metabolic targets of this product, biometric, transcriptional and biochemical analyses were carried out on both non-treated and KIEM®-treated seeds incubated for 24 and 48 h under standard (28°C) and heat stress (35°C) conditions. The application of the biostimulant as a seed treatment increased the percent germination (+6.54%) and fresh biomass (+13%) at 48 h, and decreased the content of H2O2 in treated seeds at 28°C (-70%) and at 35°C (-80%). These changes in biometric and biochemical properties were accompanied by changes in expression levels of the genes coding for ROS-producing (RBOH) and scavenging (SOD, CAT, GST) enzymes and their specific activity. In general, the treatment with KIEM® in heat-stress condition appeared to stimulate a higher accumulation of three scavenger gene transcripts: CuZnSOD (+1.78), MnSOD (+1.75), and CAT (+3.39), while the FeSOD isoform was dramatically downregulated (0.24). Moreover, the amount of non-protein thiols, important antioxidant molecules, was increased by the biostimulant after 48 h (+20%). Taken together these results suggest that KIEM® acts through mitigation of the effects of the oxidative stress. Moreover, after 48 h, the pre-sowing treatment with KIEM® increased the transcription levels (+1.5) and the activity of isocitrate lyase (+37%), a key enzyme of the glyoxylate cycle, suggesting a potential effect of this product in speeding up the germination process. Finally, the chemical characterization of KIEM® identified five essential and three non-essential amino acids, and others bioactive compounds, including five organic and inorganic acids that might be potentially involved in its activity. Based on these data, insights on the potential mechanism of action of the biostimulant, suggested that there are broader applications as a product able to increase seed tolerance to different abiotic stress typical of adverse environmental conditions.

20.
Molecules ; 25(11)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512771

RESUMEN

Annona cherimola (Cherimoya) and Annona atemoya (Atemoya) are tropical plants known for their edible fruit. Scientific data suggest that their leaves, used in traditional medicine in the form of teas or infusions without evidence of toxicity, contain several bioactive compounds. However, only Annona muricata among all the Annona species is currently used in the nutraceutical field, and its dried leaves are marketed for tea preparation. In this work, we explored the nutraceutical potential of Atemoya and Cherimoya leaves, by evaluating their chemical profile and functional properties. Phytochemical analyses showed large amounts of phenolic compounds, in particular proanthocyanidins, and identified 18 compounds, either flavonoids or alkaloids. Concerning biological activity, we found antioxidative properties correlated with polyphenols, and antiproliferative activity against HeLa and HepG2 cell lines correlated with alkaloids. The obtained results demonstrate the potential use of Annona cherimola leaves for the preparation of dietary supplements aimed to promote the physiological redox balance. Moreover, the varietal comparison suggests that two commercial cultivars (Campas and White) and the local Torre 1, better suit this purpose. On the other hand, among the studied cultivars, Campas and Torre 1 are also the richest in alkaloids and, in consideration of the anti-proliferative properties of their extracts, dietary supplements based on these cultivars might also have chemo-preventive effects.


Asunto(s)
Annona/química , Antioxidantes/farmacología , Neoplasias/patología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Polifenoles/farmacología , Annona/clasificación , Apoptosis , Proliferación Celular , Humanos , Neoplasias/tratamiento farmacológico , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA