Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(16): 169002, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925692
2.
Phys Rev Lett ; 130(8): 081401, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898104

RESUMEN

We report evidence for nonlinear modes in the ringdown stage of the gravitational waveform produced by the merger of two comparable-mass black holes. We consider both the coalescence of black hole binaries in quasicircular orbits and high-energy, head-on black hole collisions. The presence of nonlinear modes in the numerical simulations confirms that general-relativistic nonlinearities are important and must be considered in gravitational-wave data analysis.

3.
Phys Rev Lett ; 129(15): 151102, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269968

RESUMEN

Massive vector fields feature in several areas of particle physics, e.g., as carriers of weak interactions, dark matter candidates, or an effective description of photons in a plasma. Here, we investigate vector fields with self-interactions by replacing the mass term in the Proca equation with a general potential. We show that this seemingly benign modification inevitably introduces ghost instabilities of the same kind as those recently identified for vector-tensor theories of modified gravity (but in this simpler, minimally coupled theory). It has been suggested that nonperturbative dynamics may drive systems away from such instabilities. We demonstrate that this is not the case by evolving a self-interacting Proca field on a Kerr background, where it grows due to the superradiant instability. The system initially evolves as in the massive case, but instabilities are triggered in a finite time once the self-interaction becomes significant. These instabilities have implications for the formation of condensates of massive, self-interacting vector bosons, the possibility of spin-one bosenovae, vector dark matter models, and effective models for interacting photons in a plasma.

4.
Phys Rev Lett ; 129(11): 111102, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36154425

RESUMEN

We analyze GW150914 postmerger data to understand if ringdown overtone detection claims are robust. We find no evidence in favor of an overtone in the data after the waveform peak. Around the peak, the Bayes factor does not indicate the presence of an overtone, while the support for a nonzero amplitude is sensitive to changes in the starting time much smaller than the overtone damping time. This suggests that claims of an overtone detection are noise dominated. We perform GW150914-like injections in neighboring segments of the real detector noise, and we show that noise can indeed induce artificial evidence for an overtone.

5.
Phys Rev Lett ; 128(11): 111103, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363003

RESUMEN

Recent work applying the notion of pseudospectrum to gravitational physics showed that the quasinormal mode spectrum of black holes is unstable, with the possible exception of the longest-lived (fundamental) mode. The fundamental mode dominates the expected signal in gravitational wave astronomy, and there is no reason why it should have privileged status. We compute the quasinormal mode spectrum of two model problems where the Schwarzschild potential is perturbed by a small "bump" consisting of either a Pöschl-Teller potential or a Gaussian, and we show that the fundamental mode is destabilized under generic perturbations. We present phase diagrams and study a simple double-barrier toy problem to clarify the conditions under which the spectral instability occurs.


Asunto(s)
Elefantes , Siphonaptera , Animales , Física
6.
Gen Relativ Gravit ; 54(1): 3, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221342

RESUMEN

The science objectives of the LISA mission have been defined under the implicit assumption of a 4-years continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of ≈ 0.75 , which would reduce the effective span of usable data to 3 years. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 years of mission operations is recommended.

7.
Exp Astron (Dordr) ; 51(3): 1385-1416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720415

RESUMEN

Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to probe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileo's telescope. The first few detections represent the beginning of a long journey of exploration. At the current pace of technological progress, it is reasonable to expect that the gravitational-wave detectors available in the 2035-2050s will be formidable tools to explore these fascinating objects in the cosmos, and space-based detectors with peak sensitivities in the mHz band represent one class of such tools. These detectors have a staggering discovery potential, and they will address fundamental open questions in physics and astronomy. Are astrophysical black holes adequately described by general relativity? Do we have empirical evidence for event horizons? Can black holes provide a glimpse into quantum gravity, or reveal a classical breakdown of Einstein's gravity? How and when did black holes form, and how do they grow? Are there new long-range interactions or fields in our Universe, potentially related to dark matter and dark energy or a more fundamental description of gravitation? Precision tests of black hole spacetimes with mHz-band gravitational-wave detectors will probe general relativity and fundamental physics in previously inaccessible regimes, and allow us to address some of these fundamental issues in our current understanding of nature.

8.
Exp Astron (Dordr) ; 51(3): 1427-1440, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720416

RESUMEN

Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the ∼ 10 -103 Hz band of ground-based observatories and the ∼ 1 0 - 4 -10- 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ( ∼ 1 0 2 -104 M ⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.

9.
Phys Rev Lett ; 126(1): 011104, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480789

RESUMEN

We construct black hole solutions with spin-induced scalarization in a class of models where a scalar field is quadratically coupled to the topological Gauss-Bonnet term. Starting from the tachyonically unstable Kerr solutions, we obtain families of scalarized black holes such that the scalar field has either even or odd parity, and we investigate their domain of existence. The scalarized black holes can violate the Kerr rotation bound. We identify "critical" families of scalarized black hole solutions such that the expansion of the metric functions and of the scalar field at the horizon no longer allows for real coefficients. For the quadratic coupling considered here, solutions with spin-induced scalarization are entropically favored over Kerr solutions with the same mass and angular momentum.

10.
Phys Rev Lett ; 125(10): 101103, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955329

RESUMEN

Two of the dominant channels to produce merging stellar-mass black-hole binaries are believed to be the isolated evolution of binary stars in the field and dynamical formation in star clusters. The first reported black-hole binary event from the third LIGO/Virgo observing run (GW190412) is unusual in that it has unequal masses, nonzero effective spin, and nonzero primary spin at 90% confidence interval. We show that this event should be exceedingly rare in the context of both the field and cluster formation scenarios. Interpreting GW190412 as a remnant of a previous black-hole merger provides a promising route to explain its features. If GW190412 indeed formed hierarchically, we show that the region of the parameter space that is best motivated from an astrophysical standpoint (low natal spins and light clusters) cannot accommodate the observation. We analyze public GW190412 LIGO/Virgo data with a Bayesian prior where the more massive black hole resulted from a previous merger and find that this interpretation is equally supported by the data. If the heavier component of GW190412 is indeed a merger remnant, then its spin magnitude is χ_{1}=0.56_{-0.21}^{+0.19}, which is higher than the value previously reported by the LIGO/Virgo collaboration.

11.
Phys Rev Lett ; 120(13): 131104, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694214

RESUMEN

We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

12.
Phys Rev Lett ; 121(25): 251102, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608833

RESUMEN

The Laser Interferometer Space Antenna (LISA) gravitational-wave (GW) observatory will be limited in its ability to detect mergers of binary black holes (BBHs) in the stellar-mass range. A future ground-based detector network, meanwhile, will achieve by the LISA launch date a sensitivity that ensures complete detection of all mergers within a volume >O(10) Gpc^{3}. We propose a method to use the information from the ground to revisit the LISA data in search for subthreshold events. By discarding spurious triggers that do not overlap with the ground-based catalogue, we show that the signal-to-noise threshold ρ_{LISA} employed in LISA can be significantly lowered, greatly boosting the detection rate. The efficiency of this method depends predominantly on the rate of false-alarm increase when the threshold is lowered and on the uncertainty in the parameter estimation for the LISA events. As an example, we demonstrate that while all current LIGO BBH-merger detections would have evaded detection by LISA when employing a standard ρ_{LISA}=8 threshold, this method will allow us to easily (possibly) detect an event similar to GW150914 (GW170814) in LISA. Overall, we estimate that the total rate of stellar-mass BBH mergers detected by LISA can be boosted by a factor ∼4 (≳8) under conservative (optimistic) assumptions. This will enable new tests using multiband GW observations, significantly aided by the greatly increased lever arm in frequency.

13.
Phys Rev Lett ; 119(25): 251102, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303335

RESUMEN

We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

14.
Phys Rev Lett ; 119(13): 131101, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29341674

RESUMEN

Ultralight scalar fields around spinning black holes can trigger superradiant instabilities, forming a long-lived bosonic condensate outside the horizon. We use numerical solutions of the perturbed field equations and astrophysical models of massive and stellar-mass black hole populations to compute, for the first time, the stochastic gravitational-wave background from these sources. In optimistic scenarios the background is observable by Advanced LIGO and LISA for field masses m_{s} in the range ∼[2×10^{-13},10^{-12}] and ∼5×[10^{-19},10^{-16}] eV, respectively, and it can affect the detectability of resolvable sources. Our estimates suggest that an analysis of the stochastic background limits from LIGO O1 might already be used to marginally exclude axions with mass ∼10^{-12.5} eV. Semicoherent searches with Advanced LIGO (LISA) should detect ∼15(5) to 200(40) resolvable sources for scalar field masses 3×10^{-13} (10^{-17}) eV. LISA measurements of massive BH spins could either rule out bosons in the range ∼[10^{-18},2×10^{-13}] eV, or measure m_{s} with 10% accuracy in the range ∼[10^{-17},10^{-13}] eV.

15.
Phys Rev Lett ; 117(10): 101102, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636466

RESUMEN

We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

16.
Phys Rev Lett ; 115(14): 141102, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26551802

RESUMEN

Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±âˆš(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

17.
Phys Rev Lett ; 114(25): 251103, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26197116

RESUMEN

Soon after the discovery of the Kerr metric, Penrose realized that superradiance can be exploited to extract energy from black holes. The original idea (involving the breakup of a single particle) yields only modest energy gains. A variant of the Penrose process consists of particle collisions in the ergoregion. The collisional Penrose process has been explored recently in the context of dark matter searches, with the conclusion that the ratio η between the energy of postcollision particles detected at infinity and the energy of the colliding particles should be modest (η≲1.5). Schnittman [Phys. Rev. Lett. 113, 261102 (2014)] has shown that these studies underestimated the maximum efficiency by about 1 order of magnitude (i.e., η≲15). In this work we show that particle collisions in the vicinity of rapidly rotating black holes can produce high-energy ejecta and result in high efficiencies under much more generic conditions. The astrophysical likelihood of these events deserves further scrutiny, but our study hints at the tantalizing possibility that the collisional Penrose process may power gamma rays and ultrahigh-energy cosmic rays.

18.
Phys Rev Lett ; 114(8): 081103, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25768748

RESUMEN

We derive an effective potential for binary black hole (BBH) spin precession at second post-Newtonian order. This effective potential allows us to solve the orbit-averaged spin-precession equations analytically for arbitrary mass ratios and spins. These solutions are quasiperiodic functions of time: after a fixed period, the BBH spins return to their initial relative orientations and jointly precess about the total angular momentum by a fixed angle. Using these solutions, we classify BBH spin precession into three distinct morphologies between which BBHs can transition during their inspiral. We also derive a precession-averaged evolution equation for the total angular momentum that can be integrated on the radiation-reaction time and identify a new class of spin-orbit resonances that can tilt the direction of the total angular momentum during the inspiral. Our new results will help efforts to model and interpret gravitational waves from generic BBH mergers and predict the distributions of final spins and gravitational recoils.

19.
Phys Rev Lett ; 111(4): 041101, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23931346

RESUMEN

We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

20.
Phys Rev Lett ; 110(24): 241103, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25165905

RESUMEN

The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) ≲ 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...