Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 10(1): uhac240, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37077374

RESUMEN

CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding, offering enormous potential for crop improvement and food production. Although the direct delivery of Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes to grapevine (Vitis vinifera) protoplasts has been shown before, the regeneration of edited protoplasts into whole plants has not been reported. Here, we describe an efficient approach to obtain transgene-free edited grapevine plants by the transfection and subsequent regeneration of protoplasts isolated from embryogenic callus. As proof of concept, a single-copy green fluorescent protein reporter gene (GFP) in the grapevine cultivar Thompson Seedless was targeted and knocked out by the direct delivery of RNPs to protoplasts. CRISPR/Cas9 activity, guided by two independent sgRNAs, was confirmed by the loss of GFP fluorescence. The regeneration of GFP- protoplasts into whole plants was monitored throughout development, confirming that the edited grapevine plants were comparable in morphology and growth habit to wild-type controls. We report the first highly efficient protocol for DNA-free genome editing in grapevine by the direct delivery of preassembled Cas9-sgRNA RNP complexes into protoplasts, helping to address the regulatory concerns related to genetically modified plants. This technology could encourage the application of genome editing for the genetic improvement of grapevine and other woody crop plants.

2.
Plant Physiol ; 192(3): 1928-1946, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36718552

RESUMEN

Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the upregulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being upregulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologs to the NAC transcription factor AtNAP, VviNAC60 complemented the nonripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.


Asunto(s)
Factores de Transcripción , Vitis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Perfilación de la Expresión Génica , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Vitis/fisiología
3.
New Phytol ; 231(2): 726-746, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33567124

RESUMEN

Plants undergo several developmental transitions during their life cycle. In grapevine, a perennial woody fruit crop, the transition from vegetative/green-to-mature/woody growth involves transcriptomic reprogramming orchestrated by a small group of genes encoding regulators, but the underlying molecular mechanisms are not fully understood. We investigated the function of the transcriptional regulator VviNAC33 by generating and characterizing transgenic overexpressing grapevine lines and a chimeric repressor, and by exploring its putative targets through a DNA affinity purification sequencing (DAP-seq) approach combined with transcriptomic data. We demonstrated that VviNAC33 induces leaf de-greening, inhibits organ growth and directly activates the expression of STAY-GREEN PROTEIN 1 (SGR1), which is involved in Chl and photosystem degradation, and AUTOPHAGY 8f (ATG8f), which is involved in the maturation of autophagosomes. Furthermore, we show that VviNAC33 directly inhibits AUXIN EFFLUX FACILITATOR PIN1, RopGEF1 and ATP SYNTHASE GAMMA CHAIN 1T (ATPC1), which are involved in photosystem II integrity and activity. Our results show that VviNAC33 plays a major role in terminating photosynthetic activity and organ growth as part of a regulatory network governing the vegetative-to-mature phase transition.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Frutas/genética , Transcriptoma/genética
4.
Case Rep Dent ; 2020: 4876437, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685218

RESUMEN

The aim of this case report was to evaluate the efficacy of a new platelet-rich plasma preparation and its regenerative capacity of bone periapical tissue for the treatment of a very compromised endodontic treated tooth, with a periapical lesion of 1.5 cm in diameter, using a pure platelet concentrate. This is made without the use of anticoagulant or any type of activator, e.g., bovine thrombin, calcium chloride. For this reason, it has been called "Pure"; it is the B.P.F.C.® Bio-Plasma® with Pure Growth Factors (BioPlasma®) designed and developed by Dr. Raffaello Viganò. The patient has read and signed a written consent form. The study protocol was approved by the Ethics Committee for Human Studies, University of Varese. X-ray at 2 and 6 months and 4 years after endodontic surgery demonstrated the success of the treatment.

5.
Plant J ; 99(6): 1220-1241, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31125454

RESUMEN

The accumulation of secondary metabolites and the regulation of tissue acidity contribute to the important traits of grape berry and influence plant performance in response to abiotic and biotic factors. In several plant species a highly conserved MYB-bHLH-WD (MBW) transcriptional regulatory complex controls flavonoid pigment synthesis and transport, and vacuolar acidification in epidermal cells. An additional component, represented by a WRKY-type transcription factor, physically interacts with the complex increasing the expression of some target genes and adding specificity for other targets. Here we investigated the function of MBW(W) complexes involving two MYBs (VvMYB5a and VvMYB5b) and the WRKY factor VvWRKY26 in grapevine (Vitis vinifera L.). Using transgenic grapevine plants we showed that these complexes affected different aspects of morphology, plant development, pH regulation, and pigment accumulation. Transcriptomic analysis identified a core set of putative target genes controlled by VvMYB5a, VvMYB5b, and VvWRKY26 in different tissues. Our data indicated that VvWRKY26 enhances the expression of selected target genes induced by VvMYB5a/b. Among these targets are genes involved in vacuolar hyper-acidification, such as the P-type ATPases VvPH5 and VvPH1, and trafficking, and genes involved in the biosynthesis of flavonoids. In addition, VvWRKY26 is recruited specifically by VvMYB5a, reflecting the functional diversification of VvMYB5a and VvMYB5b. The expression of MBWW complexes in vegetative organs, such as leaves, indicates a possible function of vacuolar hyper-acidification in the repulsion of herbivores and/or in developmental processes, as shown by defects in transgenic grape plants where the complex is inactivated.


Asunto(s)
ATPasas Tipo P/metabolismo , Factores de Transcripción/metabolismo , Vacuolas/metabolismo , Vitis/metabolismo , Antocianinas/metabolismo , Transporte Biológico , Flavonoides/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , ATPasas Tipo P/genética , Petunia/genética , Petunia/metabolismo , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Factores de Transcripción/genética , Transcriptoma/genética , Vacuolas/genética , Vitis/genética
6.
J Vis Exp ; (145)2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30958463

RESUMEN

Plant molecular farming is the use of plants to produce molecules of interest. In this perspective, plants may be used both as bioreactors for the production and subsequent purification of the final product and for the direct oral delivery of heterologous proteins when using edible plant species. In this work, we present the development of a candidate oral vaccine against Type 1 Diabetes (T1D) in edible plant systems using deconstructed plant virus-based recombinant DNA technology, delivered with vacuum infiltration. Our results show that a red beet is a suitable host for the transient expression of a human derived autoantigen associated to T1D, considered to be a promising candidate as a T1D vaccine. Leaves producing the autoantigen were thoroughly characterized for their resistance to gastric digestion, for the presence of residual bacterial charge and for their secondary metabolic profile, giving an overview of the process production for the potential use of plants for direct oral delivery of a heterologous protein. Our analysis showed almost complete degradation of the freeze-dried candidate oral vaccine following a simulated gastric digestion, suggesting that an encapsulation strategy in the manufacture of the plant-derived GAD vaccine is required.


Asunto(s)
Beta vulgaris/genética , Productos Biológicos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Vacunas/inmunología , Administración Oral , Animales , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Metaboloma , Mutación/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Spinacia oleracea/metabolismo , Porcinos , Vacunas/administración & dosificación
7.
Plant Physiol ; 178(3): 1187-1206, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30224433

RESUMEN

Grapevine (Vitis vinifera) is a model for the investigation of physiological and biochemical changes during the formation and ripening of nonclimacteric fleshy fruits. However, the order and complexity of the molecular events during fruit development remain poorly understood. To identify the key molecular events controlling berry formation and ripening, we created a highly detailed transcriptomic and metabolomic map of berry development, based on samples collected every week from fruit set to maturity in two grapevine genotypes for three consecutive years, resulting in 219 samples. Major transcriptomic changes were represented by coordinated waves of gene expression associated with early development, veraison (onset of ripening)/midripening, and late-ripening and were consistent across vintages. The two genotypes were clearly distinguished by metabolite profiles and transcriptional changes occurring primarily at the veraison/midripening phase. Coexpression analysis identified a core network of transcripts as well as variations in the within-module connections representing varietal differences. By focusing on transcriptome rearrangements close to veraison, we identified two rapid and successive shared transitions involving genes whose expression profiles precisely locate the timing of the molecular reprogramming of berry development. Functional analyses of two transcription factors, markers of the first transition, suggested that they participate in a hierarchical cascade of gene activation at the onset of ripening. This study defined the initial transcriptional events that mark and trigger the onset of ripening and the molecular network that characterizes the whole process of berry development, providing a framework to model fruit development and maturation in grapevine.


Asunto(s)
Frutas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Transcriptoma , Vitis/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitis/crecimiento & desarrollo
8.
Front Plant Sci ; 9: 572, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765386

RESUMEN

Type-1 diabetes (T1D) is a metabolic disease involving the autoimmune destruction of insulin-producing pancreatic beta cells. It is often diagnosed by the detection of autoantibodies, typically those recognizing insulin itself or the 65-kDa isoform of glutamic acid decarboxylase (GAD65). Oral insulin can be used to induce systemic immunological tolerance and thus prevent or delay the onset of T1D, suggesting that combination treatments with other autoantigens such as GAD65 could be even more successful. GAD65 has induced oral tolerance and prevented T1D in preclinical studies but it is difficult to produce in sufficient quantities for clinical testing. Here we combined edible plant systems, namely spinach (Spinacia oleracea cv Industra) and red beet (Beta vulgaris cv Moulin Rouge), with the magnICON® expression system to develop a safe, cost-effective and environmentally sustainable platform for the large-scale production of GAD65. The superior red beet platform was extensively characterized in terms of recombinant protein yields and bioequivalence to wild-type plants, and the product was tested for its ability to resist simulated gastric digestion. Our results indicate that red beet plants are suitable for the production of a candidate oral vaccine based on GAD65 for the future preclinical and clinical testing of T1D immunotherapy approaches.

9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2125-38, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25084332

RESUMEN

Lipocalin-type prostaglandin D synthase (L-PGDS) catalyzes the isomerization of the 9,11-endoperoxide group of PGH2 (prostaglandin H2) to produce PGD2 (prostaglandin D2) with 9-hydroxy and 11-keto groups. The product of the reaction, PGD2, is the precursor of several metabolites involved in many regulatory events. L-PGDS, the first member of the important lipocalin family to be recognized as an enzyme, is also able to bind and transport small hydrophobic molecules and was formerly known as ß-trace protein, the second most abundant protein in human cerebrospinal fluid. Previous structural work on the mouse and human proteins has focused on the identification of the amino acids responsible and the proposal of a mechanism for catalysis. In this paper, the X-ray structures of the apo and holo forms (bound to PEG) of the C65A mutant of human L-PGDS at 1.40 Šresolution and of the double mutant C65A/K59A at 1.60 Šresolution are reported. The apo forms of the double mutants C65A/W54F and C65A/W112F and the triple mutant C65A/W54F/W112F have also been studied. Mutation of the lysine residue does not seem to affect the binding of PEG to the ligand-binding cavity, and mutation of a single or both tryptophans appears to have the same effect on the position of these two aromatic residues at the entrance to the cavity. A solvent molecule has also been identified in an invariant position in the cavity of virtually all of the molecules present in the nine asymmetric units of the crystals that have been examined. Taken together, these observations indicate that the residues that have been mutated indeed appear to play a role in the entrance-exit process of the substrate and/or other ligands into/out of the binding cavity of the lipocalin.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Mutación , Secuencia de Bases , Cartilla de ADN , Humanos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...