Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37710020

RESUMEN

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Asunto(s)
Lista de Verificación , Edición , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador , Microscopía
2.
BMC Bioinformatics ; 24(1): 283, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438714

RESUMEN

MOTIVATION: Quantitative descriptions of multi-cellular structures from optical microscopy imaging are prime to understand the variety of three-dimensional (3D) shapes in living organisms. Experimental models of vertebrates, invertebrates and plants, such as zebrafish, killifish, Drosophila or Marchantia, mainly comprise multilayer tissues, and even if microscopes can reach the needed depth, their geometry hinders the selection and subsequent analysis of the optical volumes of interest. Computational tools to "peel" tissues by removing specific layers and reducing 3D volume into planar images, can critically improve visualization and analysis. RESULTS: We developed VolumePeeler, a versatile FIJI plugin for virtual 3D "peeling" of image stacks. The plugin implements spherical and spline surface projections. We applied VolumePeeler to perform peeling in 3D images of spherical embryos, as well as non-spherical tissue layers. The produced images improve the 3D volume visualization and enable analysis and quantification of geometrically challenging microscopy datasets. AVAILABILITY: ImageJ/FIJI software, source code, examples, and tutorials are openly available in https://cimt.uchile.cl/mcerda.


Asunto(s)
Drosophila , Pez Cebra , Animales , Microscopía , Programas Informáticos
3.
STAR Protoc ; 4(3): 102344, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352104

RESUMEN

The implementation of in vitro approaches using undifferentiated embryonic cells from annual killifish to complement existing in vivo developmental studies has been hindered by a lack of efficient isolation techniques. Here, we present a protocol to isolate annual killifish blastoderm cells, at the epiboly and early dispersion phase, from embryos. We describe steps for hair removal, embryo cleaning, dechorionation, and cell purification. This protocol may also be used to develop strategies to isolate cells from embryos presenting similar challenges.


Asunto(s)
Blastodermo , Embrión no Mamífero , Animales , Morfogénesis
4.
Front Cell Dev Biol ; 11: 959611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020464

RESUMEN

Introduction: Deciphering the biological and physical requirements for the outset of multicellularity is limited to few experimental models. The early embryonic development of annual killifish represents an almost unique opportunity to investigate de novo cellular aggregation in a vertebrate model. As an adaptation to seasonal drought, annual killifish employs a unique developmental pattern in which embryogenesis occurs only after undifferentiated embryonic cells have completed epiboly and dispersed in low density on the egg surface. Therefore, the first stage of embryogenesis requires the congregation of embryonic cells at one pole of the egg to form a single aggregate that later gives rise to the embryo proper. This unique process presents an opportunity to dissect the self-organizing principles involved in early organization of embryonic stem cells. Indeed, the physical and biological processes required to form the aggregate of embryonic cells are currently unknown. Methods: Here, we developed an in silico, agent-based biophysical model that allows testing how cell-specific and environmental properties could determine the aggregation dynamics of early Killifish embryogenesis. In a forward engineering approach, we then proceeded to test two hypotheses for cell aggregation (cell-autonomous and a simple taxis model) as a proof of concept of modeling feasibility. In a first approach (cell autonomous system), we considered how intrinsic biophysical properties of the cells such as motility, polarity, density, and the interplay between cell adhesion and contact inhibition of locomotion drive cell aggregation into self-organized clusters. Second, we included guidance of cell migration through a simple taxis mechanism to resemble the activity of an organizing center found in several developmental models. Results: Our numerical simulations showed that random migration combined with low cell-cell adhesion is sufficient to maintain cells in dispersion and that aggregation can indeed arise spontaneously under a limited set of conditions, but, without environmental guidance, the dynamics and resulting structures do not recapitulate in vivo observations. Discussion: Thus, an environmental guidance cue seems to be required for correct execution of early aggregation in early killifish development. However, the nature of this cue (e.g., chemical or mechanical) can only be determined experimentally. Our model provides a predictive tool that could be used to better characterize the process and, importantly, to design informed experimental strategies.

5.
ArXiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824427

RESUMEN

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

6.
Cell Death Dis ; 13(7): 659, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902579

RESUMEN

Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Autofagia , Cilios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Ratones , Neuronas/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología
7.
Front Cell Dev Biol ; 10: 917662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721483

RESUMEN

Cells are exposed and respond to various mechanical forces and physical cues stemming from their environment. This interaction has been seen to differentially regulate various cellular processes for maintenance of homeostasis, of which autophagy represents one of the major players. In addition, autophagy has been suggested to regulate mechanical functions of the cells including their interaction with the environment. In this minireview, we summarize the state of the art of the fascinating interplay between autophagy and the mechanotransduction machinery associated with cell adhesions, that we name ¨Mechanoautophagy¨.

8.
Front Cell Dev Biol ; 9: 669086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222239

RESUMEN

Cadherin-mediated adhesions (also known as adherens junctions) are adhesive complexes that connect neighboring cells in a tissue. While the role of the actin cytoskeleton in withstanding tension at these sites of contact is well documented, little is known about the involvement of microtubules and the associated endoplasmic reticulum (ER) network in cadherin mechanotransduction. Therefore, we investigated how the organization of ER extensions in close proximity of cadherin-mediated adhesions can affect such complexes, and vice versa. Here, we show that the extension of the ER to cadherin-mediated adhesions is tension dependent and appears to be cadherin-type specific. Furthermore, the different structural organization of the ER/microtubule network seems to affect the localization of ER-bound PTP1B at cadherin-mediated adhesions. This phosphatase is involved in the modulation of vinculin, a molecular clutch which enables differential engagement of the cadherin-catenin layer with the actomyosin cytoskeleton in response to tension. This suggests a link between structural organization of the ER/microtubule network around cadherin-specific adhesions, to control the mechanotransduction of adherens junctions by modulation of vinculin conformational state.

9.
Front Oncol ; 11: 632956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718218

RESUMEN

Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.

11.
Mol Cell Oncol ; 7(5): 1789418, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944643

RESUMEN

High-fat diet (HFD)-induced obesity is associated with increased cancer risk. Long-term feeding with HFD increases the concentration of the saturated fatty acid palmitic acid (PA) in the hypothalamus. We previously showed that, in hypothalamic neuronal cells, exposure to PA inhibits the autophagic flux, which is the whole autophagic process from the synthesis of the autophagosomes, up to their lysosomal fusion and degradation. However, the mechanism by which PA impairs autophagy in hypothalamic neurons remains unknown. Here, we show that PA-mediated reduction of the autophagic flux is not caused by lysosomal dysfunction, as PA treatment does not impair lysosomal pH or the activity of cathepsin B.Instead, PA dysregulates autophagy by reducing autophagosome-lysosome fusion, which correlates with the swelling of endolysosomal compartments that show areduction in their dynamics. Finally, because lysosomes undergo constant dynamic regulation by the small Rab7 GTPase, we investigated the effect of PA treatment on its activity. Interestingly, we found PA treatment altered the activity of Rab7. Altogether, these results unveil the cellular process by which PA exposure impairs the autophagic flux. As impaired autophagy in hypothalamic neurons promotes obesity, and balanced autophagy is required to inhibit malignant transformation, this could affect tumor initiation, progression, and/or response to therapy of obesity-related cancers.

13.
Commun Biol ; 3(1): 429, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764731

RESUMEN

The Eph family of receptor tyrosine kinases is crucial for assembly and maintenance of healthy tissues. Dysfunction in Eph signaling is causally associated with cancer progression. In breast cancer cells, dysregulated Eph signaling has been linked to alterations in receptor clustering abilities. Here, we implemented a single-cell assay and a scoring scheme to systematically probe the spatial organization of activated EphA receptors in multiple carcinoma cells. We show that cancer cells retain EphA clustering phenotype over several generations, and the degree of clustering reported for migration potential both at population and single-cell levels. Finally, using patient-derived cancer lines, we probed the evolution of EphA signalling in cell populations that underwent metastatic transformation and acquisition of drug resistance. Taken together, our scalable approach provides a reliable scoring scheme for EphA clustering that is consistent over multiple carcinomas and can assay heterogeneity of cancer cell populations in a cost- and time-effective manner.


Asunto(s)
Carcinoma/genética , Familia de Multigenes/genética , Receptores de la Familia Eph/genética , Análisis de la Célula Individual , Carcinoma/patología , Heterogeneidad Genética , Humanos , Fenotipo , Transducción de Señal/genética
14.
Micromachines (Basel) ; 10(4)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995747

RESUMEN

The advent of micro and nanotechnologies, such as microfabrication, have impacted scientific research and contributed to meaningful real-world applications, to a degree seen during historic technological revolutions. Some key areas benefitting from the invention and advancement of microfabrication platforms are those of biological and biomedical sciences. Modern therapeutic approaches, involving point-of-care, precision or personalized medicine, are transitioning from the experimental phase to becoming the standard of care. At the same time, biological research benefits from the contribution of microfluidics at every level from single cell to tissue engineering and organoids studies. The aim of this commentary is to describe, through proven examples, the interdisciplinary process used to develop novel biological technologies and to emphasize the role of technical knowledge in empowering researchers who are specialized in a niche area to look beyond and innovate.

15.
Nat Cell Biol ; 19(1): 28-37, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27992406

RESUMEN

Multicellularity in animals requires dynamic maintenance of cell-cell contacts. Intercellularly ligated cadherins recruit numerous proteins to form supramolecular complexes that connect with the actin cytoskeleton and support force transmission. However, the molecular organization within such structures remains unknown. Here we mapped protein organization in cadherin-based adhesions by super-resolution microscopy, revealing a multi-compartment nanoscale architecture, with the plasma-membrane-proximal cadherin-catenin compartment segregated from the actin cytoskeletal compartment, bridged by an interface zone containing vinculin. Vinculin position is determined by α-catenin, and following activation, vinculin can extend ∼30 nm to bridge the cadherin-catenin and actin compartments, while modulating the nanoscale positions of the actin regulators zyxin and VASP. Vinculin conformational activation requires tension and tyrosine phosphorylation, regulated by Abl kinase and PTP1B phosphatase. Such modular architecture provides a structural framework for mechanical and biochemical signal integration by vinculin, which may differentially engage cadherin-catenin complexes with the actomyosin machinery to regulate cell adhesions.


Asunto(s)
Cadherinas/metabolismo , Nanopartículas/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Biomarcadores/metabolismo , Fenómenos Biomecánicos , Adhesión Celular , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Perros , Uniones Intercelulares/metabolismo , Interferometría , Células de Riñón Canino Madin Darby , Ratones , Microscopía , Fosforilación , Transducción de Señal , Vinculina/química , alfa Catenina/química
16.
Hig. aliment ; 30(256/257): 117-122, maio/junho 2016. tab, ilus
Artículo en Portugués | LILACS | ID: biblio-1678

RESUMEN

O presente estudo teve como objetivo avaliar a percepção do ranço, no amendoim torrado e salgado, acondicionado com e sem atmosfera modificada, com e sem adição de antioxidante natural tocoferol (0,1 e 0,15%) e alecrim (0,1%). O produto foi analisado mensalmente, no período de seis meses, sendo avaliado intensidade de sabor e odor de ranço, crocância e preferência. Amostra preparada no mês da análise foi comparada com as demais amostras. Observou-se que os antioxidantes adicionados não interferiram significativamente no desenvolvimento do sabor e do odor de ranço. As amostras acondicionadas em embalagem sem atmosfera modificada tiveram piores resultados, quanto à preferência. A crocância foi o atributo que mais sofreu impacto com o tempo, especialmente quando comparado com o produto fabricado no mês. A embalagem é o fator que mais impactou no shelf life do produto, pois os amendoins acondicionados em embalagem transparente, sem atmosfera modificada, apresentaram sabor e odor de ranço mais evidente, bem como menor crocância e menor índice de aceitação.


This study aimed to evaluate the perception of rancid in roasted and salted peanuts, packed with and without modified atmosphere, with and without addition of natural antioxidant tocopherol (0.1 and 0.15 %) and rosemary (0.1 %). The product was analyzed monthly, within six months, and assessed intensity of flavor and odor of rancid, crispness and preference. Sample prepared in the month the analysis was compared with the other samples. It was observed that the antioxidant added should not significantly interfere with the development of the flavor and odor of rancidity. The samples packed in modified atmosphere packaging without had worse results, as to preference. The crispness was attribute that suffered the most impact over time, especially when compared with the product manufactured in the month. Packaging is the factor that most impacted the shelf life of the peanuts, because the products packaged in transparent packaging without modified atmosphere showed taste and odor most obvious rancid and less crispness and lower acceptance rate.


Asunto(s)
Arachis , Embalaje de Alimentos/métodos , Composición de Alimentos , Factores de Tiempo , Calidad de los Alimentos , Almacenamiento de Alimentos , Conservación de Alimentos , Valor Nutritivo
17.
Integr Biol (Camb) ; 7(10): 1228-41, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26402903

RESUMEN

Collective migration of cells is of fundamental importance for a number of biological functions such as tissue development and regeneration, wound healing and cancer metastasis. The movement of cell groups consisting of multiple cells connected by cell-cell junctions depends on both extracellular and intercellular contacts. Epithelial cell assemblies are thus regulated by a cross-talk between cell-substrate and cell-cell interactions. Here, we investigated the onset of collective migration in groups of cells as they expand from a few cells into large colonies as a function of extracellular matrix (ECM) protein coating. By varying the amount of ECM presented to the cells, we observe that the mode of colony expansion, as well as their overall geometry, is strongly dependent on substrate adhesiveness. On high ECM protein coated surfaces, cells at the edges of the colonies are well spread exhibiting large outward-pointing protrusive activity, whereas cellular colonies display more circular and convex shapes on less adhesive surfaces. Actin structures at the edge of the colonies also show different organizations with the formation of lamellipodial structures on highly adhesive surfaces and a pluricellular actin cable on less adhesive ones. The analysis of traction forces and cell velocities within the cellular assemblies confirm these results. By increasing ECM protein density, cells exert higher traction forces together with a higher outward motility at the edges. Furthermore, tuning cell-cell adhesion of epithelial cells modified the mode of expansion of the colonies. Finally, we used a recently developed computational model to recapitulate the emergent experimental behaviors of expanding cell colonies and extract that the main effect of the different cell-substrate interactions is on the ability of edge cells to form outward lamellipodia-driven motility. Overall, our data suggest that switching behaviors of epithelial cell assemblies result in a tug-of-war between friction forces at the cell-substrate interface and cell-cell interactions.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Actomiosina/fisiología , Animales , Fenómenos Biomecánicos , Comunicación Celular/fisiología , Materiales Biocompatibles Revestidos , Simulación por Computador , Perros , Proteínas de la Matriz Extracelular/fisiología , Fibronectinas/fisiología , Células de Riñón Canino Madin Darby , Microscopía de Fuerza Atómica , Modelos Biológicos , Seudópodos/fisiología , Propiedades de Superficie
18.
Nat Commun ; 6: 7683, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26158873

RESUMEN

Closure of wounds and gaps in tissues is fundamental for the correct development and physiology of multicellular organisms and, when misregulated, may lead to inflammation and tumorigenesis. To re-establish tissue integrity, epithelial cells exhibit coordinated motion into the void by active crawling on the substrate and by constricting a supracellular actomyosin cable. Coexistence of these two mechanisms strongly depends on the environment. However, the nature of their coupling remains elusive because of the complexity of the overall process. Here we demonstrate that epithelial gap geometry in both in vitro and in vivo regulates these collective mechanisms. In addition, the mechanical coupling between actomyosin cable contraction and cell crawling acts as a large-scale regulator to control the dynamics of gap closure. Finally, our computational modelling clarifies the respective roles of the two mechanisms during this process, providing a robust and universal mechanism to explain how epithelial tissues restore their integrity.


Asunto(s)
Actomiosina/metabolismo , Movimiento Celular/fisiología , Células Epiteliales/fisiología , Animales , Simulación por Computador , Perros , Drosophila melanogaster , Epitelio , Técnica del Anticuerpo Fluorescente , Técnicas In Vitro , Microscopía Intravital , Terapia por Láser , Células de Riñón Canino Madin Darby , Microcirugia , Cicatrización de Heridas/fisiología
19.
Crit Rev Biomed Eng ; 41(4-5): 281-308, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24941410

RESUMEN

Superresolution microscopy, an ensemble of light microscopy methods developed with the aim of surpassing the resolution limit imposed by diffraction, has been at the forefront of imaging technology innovations in recent years. By harnessing advances in fluorophore photophysics, fluorescent protein engineering, optics, and image processing, rapid strides have been made in enhancing imaging resolution via 3 major approaches: structured illumination microscopy, stimulated emission depletion microscopy, and single-molecule localization microscopy. From a diffraction-limited resolution of ~250 nm, an improvement of more than an order of magnitude down to ~10 nm can now be attained, converging upon the size scale of the macromolecular building blocks of cells. This opens up the possibility of direct visualization of molecular-scale architecture and interactions of specific proteins in biological structures that are important to health and disease. Here, theoretical foundations and practical considerations of superresolution microscopy in 2- and 3-dimensional imaging are discussed, along with their recent applications in addressing biological questions.


Asunto(s)
Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Colorantes Fluorescentes/química , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos
20.
J Signal Transduct ; 2012: 125295, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848810

RESUMEN

Adherens junctions connect the actin cytoskeleton of neighboring cells through transmembrane cadherin receptors and a network of adaptor proteins. The interactions between these adaptors and cadherin as well as the activity of actin regulators localized to adherens junctions are tightly controlled to facilitate cell junction assembly or disassembly in response to changes in external or internal forces and/or signaling. Phosphorylation of tyrosine, serine, or threonine residues acts as a switch on the majority of adherens junction proteins, turning "on" or "off" their interactions with other proteins and/or their enzymatic activity. Here, we provide an overview of the kinases and phosphatases regulating phosphorylation of adherens junction proteins and bring examples of phosphorylation events leading to the assembly or disassembly of adherens junctions, highlighting the important role of phosphorylation switches in regulating their dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...