Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(21): 21105-21115, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37889165

RESUMEN

We employ a first-principles computational workflow to screen for optically accessible, high-spin point defects in wide band gap, two-dimensional (2D) crystals. Starting from an initial set of 5388 point defects, comprising both native and extrinsic, single and double defects in ten previously synthesized 2D host materials, we identify 596 defects with a triplet ground state. For these defects, we calculate the defect formation energy, hyperfine (HF) coupling, and zero-field splitting (ZFS) tensors. For 39 triplet transitions exhibiting particularly low Huang-Rhys factors, we calculate the full photoluminescence (PL) spectrum. Our approach reveals many spin defects with narrow PL line shapes and emission frequencies covering a broad spectral range. Most of the defects are hosted in hexagonal BN (hBN), which we ascribe to its high stiffness, but some are also found in MgI2, MoS2, MgBr2 and CaI2. As specific examples, we propose the defects vSMoS0 and NiSMoS0 in MoS2 as interesting candidates with potential applications to magnetic field sensors and quantum information technology.

2.
Nanoscale ; 14(26): 9485-9497, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35748506

RESUMEN

Chemical vapor deposition (CVD) has been established as a versatile route for the large-scale synthesis of transition metal dichalcogenides, such as tungsten disulfide (WS2). Yet, the precursor composition's role on the CVD process remains largely unknown and remains to be explored. Here, we employ Pulsed Laser Deposition (PLD) in a two-stage approach to tune the oxygen content in the tungsten oxide (WO3-x) precursors and demonstrate the presence of oxygen vacancies in the oxide films leads to a more facile conversion from WO3-x to WS2. Using a joint study based on ab initio density functional theory (DFT) calculations and experimental observations, we unravel that the oxygen vacancies in WO3-x can serve as niches through which sulfur atoms enter the lattice and facilitate an efficient conversion into WS2 crystals. By solely modulating the precursor stoichiometry, the photoluminescence emission of WS2 crystals can be significantly enhanced. Atomic resolution scanning transmission electron microscopy imaging (STEM) reveals that tungsten vacancies are the dominant intrinsic defects in mono- and bilayers WS2. Moreover, bi- and multilayer WS2 crystals derived from oxides with a high V0 content exhibit dominant AA'/AB or AA(A…) stacking orientations. The atomic resolution images reveal local strain buildup in bilayer WS2 due to competing effects of complex grain boundaries. Our study provides means to tune the precursor composition to control the lateral growth of TMDs while revealing insights into the different pathways for forming grain boundaries in bilayer WS2.

3.
ACS Nano ; 15(2): 2858-2868, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33576605

RESUMEN

Pulsed laser deposition (PLD) can be considered a powerful method for the growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) into van der Waals heterostructures. However, despite significant progress, the defects in 2D TMDs grown by PLD remain largely unknown and yet to be explored. Here, we combine atomic resolution images and first-principles calculations to reveal the atomic structure of defects, grains, and grain boundaries in mono- and bilayer MoS2 grown by PLD. We find that sulfur vacancies and MoS antisites are the predominant point defects in 2D MoS2. We predict that the aforementioned point defects are thermodynamically favorable under a Mo-rich/S-poor environment. The MoS2 monolayers are polycrystalline and feature nanometer size grains connected by a high density of grain boundaries. In particular, the coalescence of nanometer grains results in the formation of 180° mirror twin boundaries consisting of distinct 4- and 8-membered rings. We show that PLD synthesis of bilayer MoS2 results in various structural symmetries, including AA' and AB, but also turbostratic with characteristic moiré patterns. Moreover, we report on the experimental demonstration of an electron beam-driven transition between the AB and AA' stacking orientations in bilayer MoS2. These results provide a detailed insight into the atomic structure of monolayer MoS2 and the role of the grain boundaries on the growth of bilayer MoS2, which has importance for future applications in optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA