RESUMEN
OBJECTIVE: Some microorganisms, i.e., Candida albicans, have been associated with cancer onset and development, although whether the fungus promotes cancer or whether cancer facilitates the growth of C. albicans is unclear. In this context, microbial-derived molecules can modulate the growth and resistance of cancer cells. This study isolated extracellular lipids (ECL) from a 36-h Candida albicans biofilm incubated with oral dysplastic (DOK) and neoplastic (SCC 25) cells, which were further challenged with the topoisomerase I inhibitor camptothecin (CPT), a lipophilic anti-tumoral molecule. METHODOLOGY: ECL were extracted from a 36-h Candida albicans biofilm with the methanol/chloroform precipitation method and identified with Nuclear Magnetic Resonance (1H-NMR). The MTT tetrazolium assay measured ECL cytotoxicity in DOK and SCC 25 cells, alamarBlue™ assessed cell metabolism, flow cytometry measured cell cycle, and confocal microscopy determined intracellular features. RESULTS: Three major classes of ECL of C. albicans biofilm were found: phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylglycerol (PG). The ECL of C. albicans biofilm had no cytotoxic effect on neither cell after 24 hours, with a tendency to disturb the SCC 25 cell cycle profile (without statistical significance). The ECL-induced intracellular lipid droplet (LD) formation on both cell lines after 72 hours. In this context, ECL enhanced cell metabolism, decreased the response to CPT, and modified intracellular drug distribution. CONCLUSION: The ECL (PI, PC, and PG) of 36-h Candida albicans biofilm directly interacts with dysplastic and neoplastic oral cells, highlighting the relevance of better understanding C. albicans biofilm signaling in the microenvironment of tumor cells.
Asunto(s)
Candida albicans , Inhibidores de Topoisomerasa I , Inhibidores de Topoisomerasa I/farmacología , Gotas Lipídicas , Biopelículas , Lípidos/farmacologíaRESUMEN
Cyclins are a family of proteins characterized by possessing a cyclin box domain that mediates binding to cyclin dependent kinases (CDKs) partners. In this study, the search for a partner cyclin of the PHO85-1 CDK retrieved PCL-1 an ortholog of yeast Pcls (for Pho85 cyclins) that performs functions common to Pcls belonging to different cyclin families. We show here that PCL-1, as a typical cyclin, is involved in cell cycle control and cell progression. In addition, PCL-1 regulates glycogen metabolism; Δpcl-1 cells accumulate higher glycogen levels than wild-type cells and the glycogen synthase (GSN) enzyme is less phosphorylated and, therefore, more active in the mutant cells. Together with PHO85-1, PCL-1 phosphorylates in vitro GSN at the Ser636 amino acid residue. Modeling studies identified PHO85-1 and PCL-1 as a CDK/cyclin complex, with a conserved intermolecular region stabilized by hydrophobic and polar interactions. PCL-1 is also involved in calcium and NaCl stress response. Δpcl-1 cells are sensitive to high NaCl concentration; on the contrary, they grow better and overexpress calcium responsive genes under high calcium chloride concentration compared to the wild-type strain. The expression of the calcium-responsive CRZ-1 transcription factor is modulated by PCL-1, and this transcription factor seems to be less phosphorylated in Δpcl-1 cells since exhibits nuclear location in these cells in the absence of calcium. Our results show that PCL-1 locates at different cell regions suggesting that it may determine its activity by controlling its intracellular location and reveal an interesting functional divergence between yeast and filamentous fungus cyclins.
RESUMEN
Abstract Objective Some microorganisms, i.e., Candida albicans, have been associated with cancer onset and development, although whether the fungus promotes cancer or whether cancer facilitates the growth of C. albicans is unclear. In this context, microbial-derived molecules can modulate the growth and resistance of cancer cells. This study isolated extracellular lipids (ECL) from a 36-h Candida albicans biofilm incubated with oral dysplastic (DOK) and neoplastic (SCC 25) cells, which were further challenged with the topoisomerase I inhibitor camptothecin (CPT), a lipophilic anti-tumoral molecule. Methodology ECL were extracted from a 36-h Candida albicans biofilm with the methanol/chloroform precipitation method and identified with Nuclear Magnetic Resonance (1H-NMR). The MTT tetrazolium assay measured ECL cytotoxicity in DOK and SCC 25 cells, alamarBlue™ assessed cell metabolism, flow cytometry measured cell cycle, and confocal microscopy determined intracellular features. Results Three major classes of ECL of C. albicans biofilm were found: phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylglycerol (PG). The ECL of C. albicans biofilm had no cytotoxic effect on neither cell after 24 hours, with a tendency to disturb the SCC 25 cell cycle profile (without statistical significance). The ECL-induced intracellular lipid droplet (LD) formation on both cell lines after 72 hours. In this context, ECL enhanced cell metabolism, decreased the response to CPT, and modified intracellular drug distribution. Conclusion The ECL (PI, PC, and PG) of 36-h Candida albicans biofilm directly interacts with dysplastic and neoplastic oral cells, highlighting the relevance of better understanding C. albicans biofilm signaling in the microenvironment of tumor cells.
RESUMEN
The RVB proteins, composed of the conservative paralogs, RVB1 and RVB2, belong to the AAA+ (ATPases Associated with various cellular Activities) protein superfamily and are present in archaea and eukaryotes. The most distinct structural features are their ability to interact with each other forming the RVB1/2 complex and their participation in several macromolecular protein complexes leading them to be involved in many biological processes. We report here the biochemical and biophysical characterization of the Neurospora crassa RVB-1/RVB-2 complex. Chromatographic analyses revealed that the complex (APO) predominantly exists as a dimer in solution although hexamers were also observed. Nucleotides influence the oligomerization state, while ATP favors hexamers formation, ADP favors the formation of multimeric states, likely dodecamers, and the Molecular Dynamics (MD) simulations revealed the contribution of certain amino acid residues in the nucleotide stabilization. The complex binds to dsDNA fragments and exhibits ATPase activity, which is strongly enhanced in the presence of DNA. In addition, both GFP-fused proteins are predominantly nuclear, and their nuclear localization signals (NLS) interact with importin-α (NcIMPα). Our findings show that some properties are specific of the fungus proteins despite of their high identity to orthologous proteins. They are essential proteins in N. crassa, and the phenotypic defects exhibited by the heterokaryotic strains, mainly related to growth and development, indicate N. crassa as a promising organism to investigate additional biological and structural aspects of these proteins.
Asunto(s)
ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multienzimáticos/metabolismo , Neurospora crassa/enzimología , Multimerización de Proteína , ADN de Hongos/genética , Proteínas Fúngicas/genética , Complejos Multienzimáticos/genética , Neurospora crassa/genéticaRESUMEN
Aspergillus fumigatus produces diverse secondary metabolites whose biological functions and regulation remain to be understood. Despite the importance of the conidia for this fungus, the role of the conidia-born metabolite fumiquinazoline C (FqC) is unclear. Here, we describe a dual function of the cell-wall integrity pathway in regulating FqC biosynthesis dictated by the MAPK kinase MpkA, which phosphorylates one of the nonribosomal peptide synthetases enzymes of the cluster (FmqC), and the transcription factor RlmA, which directly regulates the expression of fmq genes. Another level of crosstalk between the FqC regulation and the cell physiology is described since the deletion of the stress-responsive transcription factor sebA provokes derepression of the fmq cluster and overproduction of FqC. Thus, we describe a mechanism by which A. fumigatus controls FqC biosynthesis orchestrated by MpkA-RlmA and SebA and hence enabling survival and adaptation to the environmental niche, given that FqC is a deterrent of ameba predation.
Asunto(s)
Aspergillus fumigatus/genética , Quinazolinas/metabolismo , Aspergillus fumigatus/metabolismo , Pared Celular/genética , Proteínas Fúngicas/genética , Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fagocitosis/fisiología , Transducción de Señal , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Transcripción GenéticaRESUMEN
Importin-α (Impα) is an adaptor protein that binds to cargo proteins (containing Nuclear Localization Sequences - NLSs), for their translocation to the nucleus. The specificities of the Impα/NLS interactions have been studied, since these features could be used as important tools to find potential NLSs in nuclear proteins or even for the development of targets to inhibit nuclear import or to design peptides for drug delivery. Few structural studies have compared different Impα variants from the same organism or Impα of different organisms. Previously, we investigated nuclear transport of transcription factors with Neurospora crassa Impα (NcImpα). Herein, NIT-2 and PAC-3 transcription factors NLSs were studied in complex with Mus musculus Impα (MmImpα). Calorimetric assays demonstrated that the PAC-3 NLS peptide interacts with both Impα proteins with approximately the same affinity. The NIT-2 NLS sequence binds with high affinity to the Impα major binding site from both organisms, but its binding to minor binding sites reveals interesting differences due to the presence of additional interactions of NIT-2-NLS with MmImpα. These findings, together with previous results with Impα from other organisms, indicate that the differential affinity of NLSs to minor binding sites may be also responsible for the selectivity of some cargo proteins recognition and transport.
Asunto(s)
Núcleo Celular/metabolismo , Ratones/fisiología , alfa Carioferinas/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Animales , Cristalización , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neurospora crassa/fisiología , Señales de Localización Nuclear/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Transporte de Proteínas , Transcripción Genética , alfa Carioferinas/genéticaRESUMEN
The zinc finger transcription factor PAC-3/RIM101/PacC has a defined role in the secretion of enzymes and proteins in response to ambient pH, and also contributes to the virulence of species. Herein we evaluated the role of PAC-3 in the regulation of Neurospora crassa genes, in a model that examined the plant-fungi interactions. N. crassa is a model fungal species capable of exhibiting dynamic responses to its environment by employing endophytic or phytopathogenic behavior according to a given circumstance. Since plant growth and productivity are highly affected by pH and phosphorus (P) acquisition, we sought to verify the impact that induction of a Δpac-3 mutation would have under limited and sufficient Pi availability, while ensuring that the targeted physiological adjustments mimicked ambient pH and nutritional conditions required for efficient fungal growth and development. Our results suggest direct regulatory functions for PAC-3 in cell wall biosynthesis, homeostasis, oxidation-reduction processes, hydrolase activity, transmembrane transport, and modulation of genes associated with fungal virulence. Pi-dependent modulation was observed mainly in genes encoding for transporter proteins or related to cell wall development, thereby advancing the current understanding regarding colonization and adaptation processes in response to challenging environments. We have also provided comprehensive evidence that suggests a role for PAC-3 as a global regulator in plant pathogenic fungi, thus presenting results that have the potential to be applied to various types of microbes, with diverse survival mechanisms.
RESUMEN
In the article mentioned above an author's name was misspelled.
RESUMEN
The Escherichia coli GhoT/GhoS system is a type V toxin-antitoxin system in which the antitoxin GhoS cleaves the GhoT mRNA, controlling its translation. GhoT is a small hydrophobic protein that damages bacterial membranes. OrtT is a GhoT-like toxin, but it apparently lacks a corresponding antitoxin and serves a different physiologic role. Using a profile hidden Markov model approach, a Salmonella enterica serovar Houten genome was screened to obtain homologs of GhoT/OrtT. We only found one protein (referred to here as OrtT-Sal) that shared more sequence identity with OrtT than GhoT. The chromosomal region around the coding sequence of OrtT-Sal suggests that it is an orphan toxin and can be under RpoH activation. To study OrtT-Sal, we chemically synthesized and expressed in E. coli the whole toxin and its N- and C-terminal regions (OrtT-Sal1-29 and OrtT-Sal29-57, respectively). Our findings have shown that the overproduction of the polypeptides resulted in severe growth inhibition and cell lysis. Using circular dichroism, we found that OrtT-Sal, OrtT-Sal1-29, and OrtT-Sal29-57 form an alpha-helical structure in the presence of SDS micelles or TFE. Finally, using carboxyfluorescein-loaded lipid vesicles, we determined that the polypeptides damage lipid membrane directly.
Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Salmonella enterica/metabolismo , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Genoma Bacteriano , Estructura Molecular , Salmonella enterica/química , Salmonella enterica/genéticaRESUMEN
Upstream open reading frames (ORFs) are frequently found in the 5'-flanking regions of genes and may have a regulatory role in gene expression. A small ORF (named cohL here) was identified upstream from the copAB copper operon in Xanthomonascitri subsp. citri (Xac). We previously demonstrated that copAB expression was induced by copper and that gene inactivation produced a mutant strain that was unable to grow in the presence of copper. Here, we address the role of cohL in copAB expression control. We demonstrate that cohL expression is induced by copper in a copAB-independent manner. Although cohL is transcribed, the CohL protein is either not expressed in vivo or is synthesized at undetectable levels. Inactivation of cohL (X. citri cohL polar mutant strain) leads to an inability to synthesize cohL and copAB transcripts and consequently the inability to grow in the presence of copper. Bioinformatic tools predicted a stem-loop structure for the cohL-copAB intergenic region and revealed that this region may arrange itself in a secondary structure. Using in vitro gene expression, we found out that the structured 5'-UTR mRNA of copAB is responsible for sequestering the ribosome-binding site that drives the translation of copA. However, copper alone was not able to release the sequence. Based on the results, we speculate that cohL plays a role as a regulatory RNA rather than as a protein-coding gene.
Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Cobre/metabolismo , Regulación Bacteriana de la Expresión Génica , Xanthomonas/genética , Región de Flanqueo 5' , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cobre/farmacología , Mutación , Sistemas de Lectura Abierta , Operón , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Xanthomonas/efectos de los fármacos , Xanthomonas/crecimiento & desarrollo , Xanthomonas/metabolismoRESUMEN
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Asunto(s)
Hongos/fisiología , Hongos/patogenicidad , Estrés Fisiológico , Brasil , Microbiología Ambiental , Microbiología Industrial , MicologíaRESUMEN
Here, we report that the Neurospora crassa FLB-3 protein, the ortholog of the Aspergillus nidulans FlbC transcription factor, is required for developmental control. Deletion of flb-3 leads to changes in hyphae morphology and affects sexual and asexual development. We identified, as putative FLB-3 targets, the N. crassa aba-1, wet-1 and vos-1 genes, orthologs of the ones involved in A. nidulans asexual development and that work downstream of FlbC (abaA, wetA and vosA). In N. crassa, these three genes require FLB-3 for proper expression; however, they appear not to be required for normal development, as demonstrated by gene expression analyses during vegetative growth and asexual development. Moreover, mutant strains in the three genes conidiate well and produce viable conidia. We also determined FLB-3 DNA-binding preferences via protein-binding microarrays (PBMs) and demonstrated by chromatin immunoprecipitation (ChIP) that FLB-3 binds the aba-1, wet-1 and vos-1 promoters. Our data support an important role for FLB-3 in N. crassa development and highlight differences between the regulatory pathways controlled by this transcription factor in different fungal species.
Asunto(s)
Proteínas Fúngicas/fisiología , Neurospora crassa/crecimiento & desarrollo , Factores de Transcripción/fisiología , Proteínas Fúngicas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hifa/genética , Hifa/crecimiento & desarrollo , Neurospora crassa/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/genéticaRESUMEN
Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies.
Asunto(s)
Membrana Celular/metabolismo , Proteínas Periplasmáticas/metabolismo , Proteómica , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/metabolismo , Electroforesis en Gel Bidimensional , Modelos Biológicos , Proteoma/metabolismoRESUMEN
Microorganisms have the ability to adapt and respond to different environmental conditions, whether they are stressful or not. Although the detection and/or responding mechanisms are often unknown, a large number of proteins may participate in signal transduction pathways involved in environmental stimulus to induce physiological and cellular events. Here, we examine the important role in cell homeostasis that extracellular pH plays in different fungi, and summarize the recent data reported in distinct organisms, by comparing them to the well-characterized mechanisms firstly described in Aspergillus and yeast. While most of the knowledge regarding the cellular processes triggered by the pH signaling pathway is based on the work in these two organisms, new data have been emerging in a diverse group of filamentous fungi, namely the involvement of this signaling pathway in metabolism and fungal pathogenicity. In this review, we present the major aspects of the pH signaling pathway in different model organisms, focusing on the protein components and the biological processes influenced by this pathway. In particular, we discuss novel cellular processes regulated by this pathway in the fungus Neurospora crassa. The diversity of functional processes that are affected under pH stress highlights how broadly this condition impacts on basic cellular processes in fungi and reveals how divergent fungal species are.
Asunto(s)
Neurospora crassa/metabolismo , Transducción de Señal , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Concentración de Iones de Hidrógeno , Neurospora crassa/genéticaRESUMEN
The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP-NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915TISSKRQRRHSKS927) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements.
Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/metabolismo , Factores de Transcripción/metabolismo , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Células Cultivadas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Células HeLa , Humanos , Neurospora crassa/genética , Estructura Secundaria de Proteína , Esporas Fúngicas , Factores de Transcripción/química , Factores de Transcripción/genética , Difracción de Rayos X , alfa Carioferinas/química , alfa Carioferinas/genéticaRESUMEN
Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis (IA), a life-threatening disease in immunocompromised humans. The echinocandin caspofungin, adopted as a second-line therapy in combating IA, is a ß-1,3-glucan synthase inhibitor, which, when used in high concentrations, reverts the anticipated A. fumigatus growth inhibition, a phenomenon called the "caspofungin paradoxical effect" (CPE). The CPE has been widely associated with increased chitin content in the cell wall due to a compensatory upregulation of chitin synthase-encoding genes. Here, we demonstrate that the CPE is dependent on the cell wall integrity (CWI) mitogen-activated protein kinase MpkAMPK1 and its associated transcription factor (TF) RlmARLM1, which regulate chitin synthase gene expression in response to different concentrations of caspofungin. Furthermore, the calcium- and calcineurin-dependent TF CrzA binds to and regulates the expression of specific chitin synthase genes during the CPE. These results suggest that the regulation of cell wall biosynthetic genes occurs by several cellular signaling pathways. In addition, CrzA is also involved in cell wall organization in the absence of caspofungin. Differences in the CPE were also observed between two A. fumigatus clinical isolates, which led to the identification of a novel basic leucine zipper TF, termed ZipD. This TF functions in the calcium-calcineurin pathway and is involved in the regulation of cell wall biosynthesis genes. This study therefore unraveled additional mechanisms and novel factors governing the CPE response, which ultimately could aid in developing more effective antifungal therapies.IMPORTANCE Systemic Aspergillus fumigatus infections are often accompanied by high mortality rates. The fungal cell wall is important for infection as it has immunomodulatory and immunoevasive properties. Paradoxical growth of A. fumigatus in the presence of high concentrations of the cell wall-disturbing agent caspofungin has been observed for more than a decade, although the mechanistic nature of this phenomenon remains largely uncharacterized. Here, we show that the CWI pathway components MpkA and RlmA as well as the calcium/calcineurin-responsive transcription factor CrzA regulate the expression of cell wall biosynthetic genes during the caspofungin paradoxical effect (CPE). Furthermore, an additional, novel calcium/calcineurin-responsive transcription factor was identified to play a role in cell wall biosynthesis gene expression during the CPE. This work paints a crucial role for calcium metabolism in the CPE and provides further insight into the complex regulation of cell wall biosynthesis, which could ultimately lead to the development of more efficient antifungal therapies.
Asunto(s)
Aspergillus fumigatus/genética , Pared Celular/metabolismo , Quitina Sintasa/genética , Equinocandinas/farmacología , Proteínas Fúngicas/metabolismo , Lipopéptidos/farmacología , Factores de Transcripción/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Caspofungina , Pared Celular/efectos de los fármacos , Pared Celular/genética , Quitina/metabolismo , Equinocandinas/genética , Equinocandinas/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Lipopéptidos/genética , Lipopéptidos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genéticaRESUMEN
BACKGROUND: Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. RESULTS: We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. CONCLUSIONS: We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses.
Asunto(s)
Calcio/metabolismo , Glucógeno/metabolismo , Neurospora crassa/citología , Neurospora crassa/metabolismo , Transducción de Señal , Trehalosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Neurospora crassa/genética , Factores de Transcripción/metabolismoRESUMEN
Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.
Asunto(s)
Concentración de Iones de Hidrógeno , Neurospora crassa/genética , Neurospora crassa/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Melaninas/biosíntesis , Monofenol Monooxigenasa , Mutación , Fenotipo , Regiones Promotoras Genéticas , Transporte de Proteínas , Proteolisis , alfa Carioferinas/metabolismoRESUMEN
When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms.
Asunto(s)
Sitios de Unión , Metabolismo de los Hidratos de Carbono , Neurospora crassa/genética , Neurospora crassa/metabolismo , Motivos de Nucleótidos , Elementos de Respuesta , Estrés Fisiológico , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Inmunoprecipitación de Cromatina , Ambiente , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Estrés Fisiológico/genéticaRESUMEN
Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.