Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr ; 154(5): 1571-1581, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527737

RESUMEN

BACKGROUND: Creatine plays a significant role in energy metabolism and positively impacts anaerobic energy capacity, muscle mass, and physical performance. Endogenous creatine synthesis requires guanidinoacetic acid (GAA) and methionine. GAA can be an alternative to creatine supplements and has been tested as a beneficial feed additive in the animal industry. When pigs are fed GAA with excess methionine, creatine is synthesized without feedback regulation. In contrast, when dietary methionine is limited, creatine synthesis is limited, yet, GAA does not accumulate in plasma, urine, or liver. OBJECTIVE: We hypothesized that portal GAA appearance requires adequate dietary methionine. METHODS: Yucatan miniature piglets (17-21 d old; n = 20) were given a 4 h duodenal infusion of complete elemental diets with supplemental GAA plus 1 of 4 methionine concentrations representing either 20%, 80%, 140%, or 200% of the dietary methionine requirement. Arterial and portal blood metabolites were measured along with blood flow to determine mass balance across the gut. [3H-methyl] methionine was infused to measure the methionine incorporation rate into creatine. RESULTS: GAA balance across the gut was highest in the 200% methionine group, indicating excess dietary methionine enhanced GAA absorption. Creatine synthesis in the liver and jejunum was higher with higher concentrations of methionine, emphasizing that the transmethylation of GAA to creatine depends on sufficient dietary methionine. Hepatic GAA concentration was higher in the 20% methionine group, suggesting low dietary methionine limited GAA conversion to creatine, which led to GAA accumulation in the liver. CONCLUSIONS: GAA absorption and conversion to creatine require a sufficient amount of methionine, and the supplementation strategies should accommodate this interaction.


Asunto(s)
Creatina , Dieta , Glicina , Metionina , Porcinos Enanos , Animales , Metionina/administración & dosificación , Metionina/metabolismo , Glicina/análogos & derivados , Glicina/administración & dosificación , Glicina/metabolismo , Porcinos , Alimentación Animal/análisis , Suplementos Dietéticos , Hígado/metabolismo , Masculino , Femenino
2.
PLoS One ; 17(10): e0275760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301815

RESUMEN

Methionine (Met) is an indispensable amino acid (AA) in piglets. Met can synthesize cysteine (Cys), and Cys has the ability to reduce the Met requirement by 40% in piglets. However, whether this sparing effect on Met is facilitated by downregulation of Cys synthesis has not been shown. This study investigated the effects of graded levels of Cys on Met and Cys oxidation, and on plasma AA concentrations. Piglets (n = 32) received a complete elemental diet via gastric catheters prior to being randomly assigned to one of the eight dietary Cys levels (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.40, 0.50 g kg-1d-1) with an adequate Met concentration (0.25g kg-1d-1). Constant infusion of L-[1-14C]-Met and L-[1-14C]-Cys were performed for 6 h on d 6 and d 8 to determine Met and Cys oxidation, respectively. Met oxidation decreased as Cys intake increased (P<0.05). At higher Cys intakes (0.15 to 0.5g kg-1d-1), Met oxidation decreased (P<0.05) at a slower rate. Cys oxidation was similar (P>0.05) among dietary Cys intakes; however, a significant polynomial relationship was observed between Cys oxidation and intake (P<0.05, R2 = 0.12). Plasma Met concentrations increased (P<0.05) linearly with increasing levels of dietary Cys, while plasma Cys concentrations changed (P<0.05) in a cubic manner and the highest concentrations occurred at the highest intake levels. Increasing dietary levels of Cys resulted in a reduction in Met oxidation until the requirement for the total sulfur AA was met, indicating the sparing capacity by Cys of Met occurs through inhibition of the transsulfuration pathway in neonatal piglets.


Asunto(s)
Cisteína , Metionina , Animales , Radioisótopos de Carbono , Cisteína/metabolismo , Dieta/veterinaria , Nutrición Enteral , Metionina/metabolismo , Racemetionina , Porcinos
3.
Environ Pollut ; 311: 119936, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964789

RESUMEN

The biomagnification of toxic methylmercury (MeHg) and selenium (Se) through aquatic food webs using nitrogen stable isotopes (δ15N) varies among ecosystems but underlying mechanisms are yet unexplained. Given the strong links between MeHg and thiol-containing amino acids and proteins containing selenocysteine, our hypothesis was that cysteine content is a better predictor of MeHg and Se transfer through lake food webs than δ15N. Food web samples were collected from six lakes in Kejimkujik National Park, Nova Scotia, Canada, and the regression slopes of log MeHg or Se versus protein-bound cysteine or bulk δ15N were compared. Across all six lakes, MeHg varied by a factor of 10 among taxa and was significantly and positively related to both cysteine (R2 = 0.65-0.80, p < 0.001) and δ15N (R2 = 0.88-0.94, p < 0.001), with no among-system differences in these slopes. In contrast, total Se concentrations varied by less than a factor of 2 among taxa in four lakes and were significantly related to cysteine in only two food webs (R2 = 0.20 & 0.37, p = 0.014 & < 0.001); however, δ15N was not a predictor of Se in any lake (p = 0.052-0.777). Overall, these novel results indicate that cysteine content predicts MeHg, and sometimes Se, across trophic levels, providing a potential mechanism for among-system differences in their biomagnification.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Contaminantes Químicos del Agua , Animales , Cisteína/metabolismo , Ecosistema , Monitoreo del Ambiente/métodos , Peces/metabolismo , Cadena Alimentaria , Lagos/química , Mercurio/análisis , Compuestos de Metilmercurio/metabolismo , Isótopos de Nitrógeno/análisis , Nueva Escocia , Selenio/metabolismo , Contaminantes Químicos del Agua/análisis
4.
J Nutr ; 152(8): 1843-1850, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35481706

RESUMEN

BACKGROUND: Parenteral nutrition (PN) is often a necessity for preterm infants; however, prolonged PN leads to gut atrophy, weakened gut barrier function, and a higher risk of intestinal infections. Peptide transporter-1 (PepT1) is a di- or tripeptide transporter in the gut and, unlike other nutrient transporters, its activity is preserved with the onset of intestinal atrophy from PN. As such, enteral amino acids in the form of dipeptides may be more bioavailable than free amino acids when atrophy is present. OBJECTIVES: In Yucatan miniature piglets with PN-induced intestinal atrophy, we sought to determine the structural and functional effects of enteral refeeding with lysine as a dipeptide, compared to free L-lysine. METHODS: Piglets aged 7-8 days were PN-fed for 4 days to induce intestinal atrophy, then were refed with enteral diets with equimolar lysine supplied as lysyl-lysine (Lys-Lys; n = 7), free lysine (n = 7), or Lys-Lys with glycyl-sarcosine (n = 6; to determine whether competitive inhibition of Lys-Lys uptake would abolish PepT1-mediated effects). The diets provided lysine at 75% of the requirement and were gastrically delivered for a total of 18 hours. Whole-body and tissue-specific protein synthesis, as well as indices for gut structure and barrier function, were measured. RESULTS: The villus height, mucosal weight, and free lysine concentration were higher in the Lys-Lys group compared to the other 2 groups (P < 0.05). Lysyl-lysine led to greater whole-body protein synthesis compared to free lysine (P < 0.05). Mucosal myeloperoxidase activity was lower in the Lys-Lys group (P < 0.05), suggesting less inflammation. The inclusion of glycyl-sarcosine with Lys-Lys abolished the dipeptide effects on whole-body and tissue-specific protein synthesis (P < 0.05), suggesting that improved lysine availability was mediated by PepT1. CONCLUSIONS: Improved intestinal structure and whole-body protein synthesis suggests that feeding strategies designed to exploit PepT1 may help to avoid adverse effects when enteral nutrition is reintroduced into the compromised guts of neonatal piglets.


Asunto(s)
Lisina , Sarcosina , Aminoácidos/metabolismo , Animales , Atrofia , Dipéptidos/farmacología , Humanos , Recién Nacido , Recien Nacido Prematuro , Mucosa Intestinal/metabolismo , Lisina/metabolismo , Lisina/farmacología , Sarcosina/metabolismo , Porcinos
5.
Nutrients ; 13(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34444799

RESUMEN

Neonates with preterm, gastrointestinal dysfunction and very low birth weights are often intolerant to oral feeding. In such infants, the provision of nutrients via parenteral nutrition (PN) becomes necessary for short-term survival, as well as long-term health. However, the elemental nutrients in PN can be a major source of oxidants due to interactions between nutrients, imbalances of anti- and pro-oxidants, and environmental conditions. Moreover, neonates fed PN are at greater risk of oxidative stress, not only from dietary sources, but also because of immature antioxidant defences. Various interventions can lower the oxidant load in PN, including the supplementation of PN with antioxidant vitamins, glutathione, additional arginine and additional cysteine; reduced levels of pro-oxidant nutrients such as iron; protection from light and oxygen; and proper storage temperature. This narrative review of published data provides insight to oxidant molecules generated in PN, nutrient sources of oxidants, and measures to minimize oxidant levels.


Asunto(s)
Nutrición Enteral , Oxidantes , Nutrición Parenteral , Antioxidantes , Atrofia , Cisteína , Glutatión/metabolismo , Humanos , Recién Nacido , Recién Nacido de muy Bajo Peso , Peroxidación de Lípido , Hepatopatías , Estrés Oxidativo , Nutrición Parenteral Total , Nacimiento Prematuro , Especies Reactivas de Oxígeno , Vitaminas
6.
Am J Clin Nutr ; 114(3): 839-840, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34113964
7.
J Nutr ; 151(3): 531-539, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33437999

RESUMEN

BACKGROUND: Suckling piglets synthesize most of their creatine requirement, which consumes substantial amounts of arginine in order to synthesize guanidinoacetic acid (GAA) and methionine in order to transmethylate GAA to creatine. OBJECTIVES: To determine whether supplemental GAA or creatine spare arginine and/or methionine for protein synthesis and, if GAA is supplemented, whether excess methionine is needed for conversion to creatine. METHODS: Yucatan miniature piglets (9-11 days old; both sexes) were fed 1 of 5 elemental diets for 5 days: 1) low arginine (0.3 g·kg-1·d-1) and low methionine (0.20 g·kg-1·d-1; Base); 2) Base plus GAA (0.093 g·kg-1·d-1; +GAA); 3) Base plus GAA plus excess methionine (0.5 g·kg-1·d-1; +GAA/Met); 4) Base plus creatine (0.12 g·kg-1·d-1; +Cre); or 5) excess arginine (1.8 g·kg-1·d-1) and excess methionine (+Arg/Met). Isotope tracers were infused to determine whole-body GAA, creatine, and protein synthesis; tissues were analyzed for creatine synthesis enzymes and metabolite concentrations. Data were analyzed by 1-way ANOVA. RESULTS: : GAA and creatine syntheses were 115% and 32% higher, respectively, with the +Arg/Met diet (P < 0.0001), in spite of 33% lower renal L-arginine: glycine amidinotransferase activity (P < 0.0001) compared to Base, suggesting substrate availability dictates synthesis rather than enzyme capacity. GAA or creatine supplementation reduced arginine conversion to creatine by 46% and 43%, respectively (P < 0.01), but did not spare amino acids for whole-body protein synthesis, suggesting that limited amino acids were diverted to protein at the expense of creatine synthesis. The +GAA/Met diet led to higher creatine concentrations in the kidney (2.6-fold) and liver (7.6-fold) than the +GAA diet (P < 0.01), suggesting excess methionine is needed for GAA conversion to creatine. CONCLUSIONS: Piglets are capable of synthesizing sufficient creatine from the precursor amino acids arginine and methionine, or from GAA plus methionine.


Asunto(s)
Animales Recién Nacidos/metabolismo , Arginina/administración & dosificación , Creatina/biosíntesis , Glicina/análogos & derivados , Metionina/administración & dosificación , Porcinos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Arginina/metabolismo , Dieta/veterinaria , Reducción Gradual de Medicamentos , Femenino , Glicina/administración & dosificación , Glicina/metabolismo , Marcaje Isotópico , Masculino , Metionina/metabolismo , Fenilalanina/metabolismo , Tirosina/metabolismo
8.
Int J Mol Sci ; 21(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384688

RESUMEN

The risk for non-communicable diseases in adulthood can be programmed by early nutrition. This programming is mediated by changes in expression of key genes in various metabolic pathways during development, which persist into adulthood. These developmental modifications of genes are due to epigenetic alterations in DNA methylation patterns. Recent studies have demonstrated that DNA methylation can be affected by maternal or early postnatal diets. Because methyl groups for methylation reactions come from methionine cycle nutrients (i.e., methionine, choline, betaine, folate), deficiency or supplementation of these methyl nutrients can directly change epigenetic regulation of genes permanently. Although many studies have described the early programming of adult diseases by maternal and infant nutrition, this review discusses studies that have associated early dietary methyl nutrient manipulation with direct effects on epigenetic patterns that could lead to chronic diseases in adulthood. The maternal supply of methyl nutrients during gestation and lactation can alter epigenetics, but programming effects vary depending on the timing of dietary intervention, the type of methyl nutrient manipulated, and the tissue responsible for the phenotype. Moreover, the postnatal manipulation of methyl nutrients can program epigenetics, but more research is needed on whether this approach can rescue maternally programmed offspring.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Metionina/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Femenino , Humanos , Fenómenos Fisiologicos Nutricionales Maternos , Metionina/análogos & derivados , Embarazo
9.
Appl Physiol Nutr Metab ; 45(12): 1311-1323, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32459974

RESUMEN

The revised version of Canada's Food Guide, released in January 2019, issued new guidance by combining meat and alternatives with milk and alternatives into a single group called "protein foods" and emphasized selecting plant-based foods from this category more often. Though the changes represent a simple depiction of a healthy plate, the new Food Guide has opened knowledge gaps about protein foods and exposed new concerns about the interpretation and implementation of the Food Guide among vulnerable groups, particularly children and the elderly. To address key knowledge and research gaps, nutrition leaders need to reach a consensus on key messages to best inform the development of tools and resources to support practitioners in translating messages to consumers, including foodservice standards. Among consumers, families with young children are a primary target for these resources as they develop their life-long habits to ensure they have the knowledge and skills to select, prepare, and consume nutrient-rich protein foods. The new Food Guide provides an opportunity to address the existing knowledge gaps, develop tools and resources to support health professionals, and design interventions that will help Canadian families choose, prepare, and eat nutrient-rich protein foods. Novelty An updated Canadian regulatory framework is needed for protein labelling and content/health claims. There are knowledge gaps about protein foods consumption and food literacy needed to optimize nutritional health. Mandatory nutrition policies are needed to safeguard the provision of high-quality protein foods across institutions that serve children and older adults.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Alimentos/clasificación , Ingesta Diaria Recomendada , Canadá , Comunicación , Dieta , Etiquetado de Alimentos , Conocimientos, Actitudes y Práctica en Salud , Humanos , Política Nutricional
10.
PLoS One ; 15(1): e0226806, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31905208

RESUMEN

The emergence of creatine as a potential cognitive enhancement supplement for humans prompted an investigation as to whether supplemental creatine could enhance spatial memory in young swine. We assessed memory performance and brain concentrations of creatine and its precursor guanidinoacetic acid (GAA) in 14-16-week-old male Yucatan miniature pigs supplemented for 2 weeks with either 200 mg/kg∙d creatine (+Cr; n = 7) or equimolar GAA (157 mg/kg∙d) (+GAA; n = 8) compared to controls (n = 14). Spatial memory tests had pigs explore distinct sets of objects for 5 min. Objects were spatially controlled, and we assessed exploration times of previously viewed objects relative to novel objects in familiar or novel locations. There was no effect of either supplementation on memory performance, but pigs successfully identified novel objects after 10 (p < 0.01) and 20 min (p < 0.01) retention intervals. Moreover, pigs recognized spatial transfers after 65 min (p < 0.05). Regression analyses identified associations between the ability to identify novel objects in memory tests and concentrations of creatine and GAA in cerebellum, and GAA in prefrontal cortex (p < 0.05). The concentration of creatine in brain regions was not influenced by creatine supplementation, but GAA supplementation increased GAA concentration in cerebellum (p < 0.05), and the prefrontal cortex of +GAA pigs had more creatine/g and less GAA/g compared to +Cr pigs (p < 0.05). Creatine kinase activity and maximal reaction velocity were also higher with GAA supplementation in prefrontal cortex (p < 0.05). In conclusion, there appears to be a relationship between memory performance and guanidino compounds in the cerebellum and prefrontal cortex, but the effects were unrelated to dietary supplementation. The cerebellum is identified as a target site for GAA accretion.


Asunto(s)
Alimentación Animal/análisis , Encéfalo/fisiología , Creatina/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos , Glicina/análogos & derivados , Memoria Espacial/fisiología , Animales , Encéfalo/efectos de los fármacos , Glicina/administración & dosificación , Masculino , Memoria Espacial/efectos de los fármacos , Porcinos , Porcinos Enanos , Destete
11.
J Nutr ; 150(3): 443-449, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31687740

RESUMEN

BACKGROUND: Arginine:glycine amidinotransferase, necessary for the conversion of arginine (Arg) to guanidinoacetic acid (GAA), is expressed mainly in kidney and pancreas. The methylation of GAA to creatine (Cre) primarily occurs in the liver. The role of the gut in Cre homeostasis has not been characterized. OBJECTIVE: We aimed to quantify the contribution of kidney, pancreas, and gut as sources of GAA for Cre synthesis. METHODS: Sow-reared, feed-deprived Yucatan miniature piglets (17-21 d old) were randomly assigned to acute intravenous treatments (expressed in µmol/kg/min) of: 1) Arg (4.8) + methionine (1.4) (Arg/Met), 2) Cre (0.6) with Arg/Met (Cre/Arg/Met), 3) citrulline (4.8) + methionine (1.4) (Cit/Met), or 4) alanine (6.2) (Ala). Suckling piglets were also studied. RESULTS: Renal GAA release was higher during Cit/Met compared with all other treatments (53-360% higher; P < 0.01), suggesting that Cit is a better precursor than Arg for renal GAA synthesis. Kidneys contributed higher (P < 0.01) proportions of the total GAA with Cit/Met (89%) and Arg/Met (68%) treatments compared with pancreas and gut. In the suckling pigs, kidneys contributed 88% of the GAA, with the remainder released by pancreas. None of the treatments resulted in a net flux of Cre across the kidney or pancreas. In the gut, Arg/Met and Cre/Arg/Met, but not Cit/Met, resulted in a net release of Cre. Cre/Arg/Met resulted in a higher net GAA release from the gut (P < 0.0001) and pancreas (P < 0.001) (68% of total GAA produced) compared with all other treatments (<19% from both organs), perhaps because GAA not needed for creatine synthesis was subsequently released. CONCLUSIONS: Cit is a better precursor than Arg for renal GAA synthesis, and kidney is the major source of GAA for Cre synthesis in neonatal piglets, but the gut also has the capacity to synthesize GAA and Cre when Arg and Met are available.


Asunto(s)
Creatina/biosíntesis , Glicina/análogos & derivados , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Páncreas/metabolismo , Aminoácidos/metabolismo , Animales , Creatina/sangre , Femenino , Glicina/sangre , Glicina/metabolismo , Metilación , Porcinos , Porcinos Enanos
12.
J Pediatr Gastroenterol Nutr ; 69(6): 719-725, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568154

RESUMEN

OBJECTIVES: The purpose of the present study was to determine if protecting parenteral nutrition solutions from ambient light and supplementing with N-acetylcysteine (NAC) improves mesenteric blood flow, gut morphology, and oxidative status of parenterally fed neonates. METHODS: Neonatal Yucatan miniature piglets (n = 23, 7-11 days old) were surgically fitted with central venous catheters and an ultrasonic blood flow probe around the superior mesenteric artery. Piglets were fed continuously for 7 days either light-protected (LP) or light-exposed (LE) complete parenteral nutrition that was enriched with either NAC or alanine (ALA). RESULTS: There were no differences in body weight or overall gut morphology among groups after 7 days. Plasma concentrations of NAC were greater and total homocysteine lower in NAC- versus ALA-supplemented pigs on day 7 (N-acetylcysteine: 94 vs 7 µmol/L; P < 0.001; homocysteine: 14 versus 21 µmol/L; P < 0.005); plasma total glutathione was not affected. Hepatic lipid peroxidation was reduced by 25% in piglets that received LP parenteral nutrition (P < 0.05). The mesenteric artery blood flow decreased in all pigs between days 2 and 6 (P < 0.001) because of parenteral feeding. Photoprotection alone (LP-ALA) attenuated the decrease in mesenteric blood flow to 66% of baseline on day 6 compared with LE-ALA (37%; P < 0.05) and LP-NAC pigs (43%; P = 0.062); LE-NAC piglets had intermediate reductions in blood flow (55%). CONCLUSIONS: Photoprotection of parenteral nutrition solutions is a simple, effective method to attenuate decline in blood flow to the gut and hepatic lipid peroxidation, which are both commonly associated with parenteral feeding.


Asunto(s)
Acetilcisteína/administración & dosificación , Luz/efectos adversos , Nutrición Parenteral Total/métodos , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Humanos , Intestinos/irrigación sanguínea , Masculino , Arterias Mesentéricas/fisiología , Oxidación-Reducción , Distribución Aleatoria , Porcinos
13.
Sci Total Environ ; 688: 567-573, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31254822

RESUMEN

Aquatic invertebrates vary in methylmercury (MeHg) levels among systems which has been attributed, in part, to environmental conditions, but may also be linked to differences in their biochemical composition. As MeHg is known to bind to thiol-containing amino acids such as cysteine in proteins of fish, our objective was to determine if these amino acids explain MeHg variability among aquatic invertebrate taxa. Benthic macroinvertebrates from diverse functional feeding groups and bulk zooplankton were collected from six acidic lakes in Kejimkujik National Park, Nova Scotia, Canada, and analyzed for MeHg, cysteine (as cysteic acid), methionine (as methionine sulfone), and nitrogen (relative trophic level, δ15N) and carbon (carbon source, δ13C) isotopes. MeHg was significantly and positively related to cysteine or methionine in zooplankton, caddisfly and stonefly tissues (R2 from 0.24 to 0.57). In addition, methionine or cysteine in combination with δ15N and/or δ13C were better predictors of MeHg levels in stoneflies, mayflies, caddisflies and zooplankton among these lakes (R2adj = 0.25-0.91). Overall, these novel findings suggest that the variability in MeHg of aquatic invertebrates can be explained, in part, by their tissue levels of thiol-containing amino acids.


Asunto(s)
Aminoácidos/metabolismo , Organismos Acuáticos/metabolismo , Invertebrados/metabolismo , Compuestos de Metilmercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Monitoreo del Ambiente , Nueva Escocia , Compuestos de Sulfhidrilo
14.
J Nutr Biochem ; 59: 129-135, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986307

RESUMEN

Methionine partitioning between protein turnover and a considerable pool of transmethylation precursors is a critical process in the neonate. Transmethylation yields homocysteine, which is either oxidized to cysteine (i.e., transsulfuration), or is remethylated to methionine by folate- or betaine- (from choline) mediated remethylation pathways. The present investigation quantifies the individual and synergistic importance of folate and betaine for methionine partitioning in neonates. To minimize whole body remethylation, 4-8-d-old piglets were orally fed an otherwise complete diet without remethylation precursors folate, betaine and choline (i.e. methyl-deplete, MD-) (n=18). Dietary methionine was reduced from 0.3 to 0.2 g/(kg∙d) on day-5 to limit methionine availability, and methionine kinetics were assessed during a gastric infusion of [13C1]methionine and [2H3-methyl]methionine. Methionine kinetics were reevaluated 2 d after pigs were rescued with either dietary folate (38 µg/(kg∙d)) (MD + F) (n=6), betaine (235 mg/(kg∙d)) (MD + B) (n=6) or folate and betaine (MD + FB) (n=6). Plasma choline, betaine, dimethylglycine (DMG), folate and cysteine were all diminished or undetectable after 7 d of methyl restriction (P<.05). Post-rescue, plasma betaine and folate concentrations responded to their provision, and homocysteine and glycine concentrations were lower (P<.05). Post-rescue, remethylation and transmethylation rates were~70-80% higher (P<.05), and protein breakdown was spared by 27% (P<.05). However, rescue did not affect transsulfuration (oxidation), plasma methionine, protein synthesis or protein deposition (P>.05). There were no differences among rescue treatments; thus betaine was as effective as folate at furnishing remethylation. Supplemental betaine or folate can furnish the transmethylation requirement during acute protein restriction in the neonate.


Asunto(s)
Betaína/farmacología , Ácido Fólico/farmacología , Metionina/metabolismo , Animales , Animales Recién Nacidos , Betaína/farmacocinética , Sangre/efectos de los fármacos , Sangre/metabolismo , Colina/farmacología , Femenino , Ácido Fólico/farmacocinética , Masculino , Metionina/farmacología , Metilación/efectos de los fármacos , Porcinos , Vitamina U/farmacocinética , Vitamina U/farmacología
15.
Appl Physiol Nutr Metab ; 43(7): 755-758, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29671333

RESUMEN

Partnerships among academia, government, and industry have emerged in response to global challenges in food and nutrition. At a workshop reviewing international partnerships, we concluded that to build a partnership, partners must establish a common goal, identify barriers, and engage all stakeholders to ensure project sustainability. To be effective, partnerships must synchronize methodologies and adopt evidence-based processes, and be led by governmental or nonprofit organizations to ensure trust among partners and with the public.


Asunto(s)
Política Nutricional , Salud Pública , Asociación entre el Sector Público-Privado , Dieta Saludable , Medicina Basada en la Evidencia , Abastecimiento de Alimentos , Humanos , Estado Nutricional
16.
Pediatr Res ; 83(1-1): 135-141, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28846669

RESUMEN

BackgroundCreatine is not included in commercial pediatric parenteral products; the entire creatine requirement must be met by de novo synthesis from arginine during parenteral nutrition (PN). Poor arginine status is common during PN in neonates, which may compromise creatine accretion. We hypothesized that creatine supplementation will improve creatine status and spare arginine in PN-fed piglets.MethodsPiglets (3-5-day (d) old) were provided PN with or without creatine for 14 d. Tissue concentrations of creatine metabolites and activities of creatine-synthesizing enzymes, as well as tissue protein synthesis rates and liver lipid parameters, were measured.ResultsCreatine provision lowered kidney and pancreas L-arginine:glycine amidinotransferase (AGAT, EC number 2.1.4.1) activities and plasma guanidinoacetic acid (GAA) concentration, suggesting the downregulation of de novo creatine synthesis. Creatine increased plasma creatine concentrations to sow-fed reference levels and increased the creatine concentrations in most tissues, but not in the brain. PN creatine resulted in greater protein synthesis in the liver and the kidney, but not in the pancreas, skeletal muscle, or gut. Creatine supplementation also reduced liver cholesterol concentrations, but not triglyceride or total fat.ConclusionThe addition of creatine to PN may optimize the accretion of creatine and reduce the metabolic burden of creatine synthesis in rapidly growing neonates.


Asunto(s)
Creatina , Suplementos Dietéticos , Riñón , Hígado , Animales , Animales Recién Nacidos , Arginina/metabolismo , Peso Corporal , Colesterol/sangre , Colesterol/metabolismo , Creatina/administración & dosificación , Creatina/sangre , Glicina/análogos & derivados , Glicina/química , Riñón/metabolismo , Lípidos/química , Hígado/metabolismo , Músculo Esquelético/metabolismo , Tamaño de los Órganos , Nutrición Parenteral , Distribución Aleatoria , Porcinos , Porcinos Enanos , Triglicéridos/metabolismo
17.
Anal Biochem ; 539: 158-161, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29106907

RESUMEN

We examined the performance of an ultra-high performance liquid chromatography method to quantify protein-bound sulphur amino acids in zooplankton. Both cysteic acid and methionine sulfone were linear from 5 to 250 pmol (r2 = 0.99), with a method detection limit of 13 pmol and 9 pmol, respectively. Although there was no matrix effect on linearity, adjacent peaks and co-eluting noise from the invertebrate proteins increased the detection limits when compared to common standards. Overall, performance characteristics were reproducible and accurate, and provide a means for quantifying sulphur amino acids in aquatic invertebrates, an understudied group.


Asunto(s)
Aminoácidos Sulfúricos/análisis , Cromatografía Líquida de Alta Presión/métodos , Zooplancton/metabolismo , Animales , Límite de Detección , Metionina/análogos & derivados , Metionina/análisis , Espectrometría de Fluorescencia
18.
Appl Physiol Nutr Metab ; 42(12): 1322-1329, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28813611

RESUMEN

Early nutrition has critical influences on cardiovascular disease risk in adulthood. The study objectives were to evaluate the impact of low birth weight on fasting and postprandial lipid metabolism and endothelium function in Yucatan miniature pigs. Intrauterine growth-restricted (IUGR) piglets (n = 6; 3 days old, 0.73 ± 0.04 kg) were paired with normal-weight (NW) same-sex littermates (n = 6; 1.11 ± 0.05 kg) and fed milk replacer ad libitum for 4 weeks. Thereafter, all pigs were fed a standard diet ad libitum for 5 h/day with growth, intakes, and blood samples collected for 8 months. At 9 months old, pigs were surgically fitted with venous catheters and an oral fat tolerance test was performed. At 10 months old, pigs were killed and endothelium-dependent and -independent vasodilations of isolated coronary arteries were measured using wire-myographs. IUGR pigs demonstrated catch-up growth (P < 0.05) in body weight and abdominal circumference prior to sexual maturity (<7 months old) and had more (P < 0.05) subcutaneous fat at 10 months old compared with NW pigs. IUGR pigs had consistently higher fasting plasma triglyceride concentrations from 5 to 10 months old and higher liver triglyceride and total cholesterol concentrations at 10 months old (P < 0.05). The fat tolerance test revealed delayed postprandial triglyceride clearance in IUGR pigs, but no differences in plaque formation or vascular reactivity. To conclude, IUGR and early postnatal catch-up growth are associated with increased overall body fat deposition and altered triglyceride metabolism in adult Yucatan miniature swine.


Asunto(s)
Adiposidad/fisiología , Retardo del Crecimiento Fetal/veterinaria , Metabolismo de los Lípidos/fisiología , Porcinos/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Dieta , Femenino , Masculino , Porcinos Enanos
19.
J Nutr ; 147(2): 202-210, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28053172

RESUMEN

BACKGROUND: The neonatal gastrointestinal tract extracts the majority of dietary threonine on the first pass to maintain synthesis of threonine-rich mucins in mucus. As dietary threonine becomes limiting, this extraction must limit protein synthesis in extraintestinal tissues at the expense of maintaining protein synthesis in mucin-producing tissues. OBJECTIVE: The objective was to determine the dietary threonine concentration at which protein synthesis is reduced in various tissues. METHODS: Twenty Yucatan miniature piglets (10 females; mean ± SD age, 15 ± 1 d; mean ± SD weight, 3.14 ± 0.30 kg) were fed 20 test diets with different threonine concentrations, from 0.5 to 6.0 g/100 g total amino acids (AAs; i.e., 20-220% of requirement), and various tissues were analyzed for protein synthesis by administering a flooding dose of [3H]phenylalanine. The whole-body requirement was determined by [1-14C]phenylalanine oxidation and plasma threonine concentrations. RESULTS: Breakpoint analysis indicated a whole-body requirement of 2.8-3.0 g threonine/100 g total AAs. For all of the non-mucin-producing tissues as well as lung and colon, breakpoint analyses indicated decreasing protein synthesis rates below the following concentrations (expressed in g threonine/100 g total AAs; mean ± SE): gastrocnemius muscle, 1.76 ± 0.23; longissimus dorsi muscle, 2.99 ± 0.50; liver, 2.45 ± 0.60; kidney, 3.81 ± 0.97; lung, 1.95 ± 0.14; and colon, 1.36 ± 0.29. Protein synthesis in the other mucin-producing tissues (i.e., stomach, proximal jejunum, midjejunum, and ileum) did not change with decreasing threonine concentrations, but mucin synthesis in the ileum and colon decreased over threonine concentrations <4.54 ± 1.50 and <3.20 ± 4.70 g/100 g total AAs, respectively. CONCLUSIONS: The results of this study illustrate that dietary threonine is preferentially used for protein synthesis in gastrointestinal tissues in piglets. If dietary threonine intake is deficient, then muscle growth and the functions of other tissues are likely compromised at the expense of maintenance of the mucus layer in mucin-producing tissues.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Mucinas/biosíntesis , Necesidades Nutricionales , Porcinos/fisiología , Treonina/farmacología , Oxidorreductasas de Alcohol/metabolismo , Aminoácidos/sangre , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Femenino , Intestinos/enzimología , Hígado/enzimología , Treonina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...