Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 24(8): 3218-3227, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659661

RESUMEN

One possible pathway toward reducing the cost of III-V solar cells is to remove them from their growth substrate by spalling fracture, and then reuse the substrate for the growth of multiple cells. Here we consider the growth of III-V cells on spalled GaAs(100) substrates, which typically have faceted surfaces after spalling. To facilitate the growth of high-quality cells, these faceted surfaces should be smoothed prior to cell growth. In this study, we show that these surfaces can be smoothed during organometallic vapor-phase epitaxy growth, but the choice of epilayer material and modification of the various surfaces by impurities/dopants greatly impacts whether or not the surface becomes smooth, and how rapidly the smoothing occurs. Representative examples are presented along with a discussion of the underlying growth processes. Although this work was motivated by solar cell growth, the methods are generally applicable to the growth of any III-V device on a nonplanar substrate.

2.
ACS Appl Mater Interfaces ; 14(34): 39535-39547, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35984223

RESUMEN

The role of disorder and particularly of the interfacial region between crystalline and amorphous phases of indium oxide in the formation of hydrogen defects with covalent (In-OH) or ionic (In-H-In) bonding are investigated using ab initio molecular dynamics and hybrid density-functional approaches. The results reveal that disorder stabilizes In-H-In defects even in the stoichiometric amorphous oxide and also promotes the formation of deep electron traps adjacent to In-OH defects. Furthermore, below-room-temperature fluctuations help switch interfacial In-H-In into In-OH, creating a new deep state in the process. This H-defect transformation limits not only the number of free carriers but also the grain size, as observed experimentally in heavily H-doped sputtered In2Ox. On the other hand, the presence of In-OH helps break O2 defects, abundant in the disordered indium oxide, and thus contributes to faster crystallization rates. The divergent electronic properties of the ionic vs covalent H defects─passivation of undercoordinated In atoms vs creation of new deep electron traps, respectively─and the different behavior of the two types of H defects during crystallization suggest that the resulting macroscopic properties of H-doped indium oxide are governed by the relative concentrations of the In-H-In and In-OH defects. The microscopic understanding of the H defect formation and properties developed in this work serves as a foundation for future research efforts to find ways to control H species during deposition.

3.
Rev Sci Instrum ; 93(6): 065113, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778008

RESUMEN

It is widely accepted that micro- and nanoscale inhomogeneities govern the performance of many thin-film solar cell absorbers. These inhomogeneities yield material properties (e.g., composition, structure, and charge collection) that are challenging to correlate across length scales and measurement modalities. The challenge is compounded if a correlation is sought during device operation or in conditions that mimic aging under particular stressors (e.g., heat and electrical bias). Correlative approaches, particularly those based on synchrotron x-ray sources, are powerful since they can access several material properties in different modes (e.g., fluorescence, diffraction, and absorption) with minimal sample preparation. Small-scale laboratory x-ray instruments have begun to offer multi-modality but are typically limited by low x-ray photon flux, low spatial resolution, or specific sample sizes. To overcome these limitations, a characterization stage was developed to enable multi-scale, multi-modal operando measurements of industrially relevant photovoltaic devices. The stage offers compatibility across synchrotron x-ray facilities, enabling correlation between nanoscale x-ray fluorescence microscopy, microscale x-ray diffraction microscopy, and x-ray beam induced current microscopy, among others. The stage can accommodate device sizes up to 25 × 25 mm2, offering access to multiple regions of interest and increasing the statistical significance of correlated properties. The stage materials can sustain humid and non-oxidizing atmospheres, and temperature ranges encountered by photovoltaic devices in operational environments (e.g., from 25 to 100 °C). As a case study, we discuss the functionality of the stage by studying Se-alloyed CdTe photovoltaic devices aged in the stage between 25 and 100 °C.

4.
ACS Appl Mater Interfaces ; 13(27): 32424-32434, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34185509

RESUMEN

Heterojunction Si solar cells exhibit notable performance degradation. We modeled this degradation by electronic defects getting generated by thermal activation across energy barriers over time. To analyze the physics of this degradation, we developed the SolDeg platform to simulate the dynamics of electronic defect generation. First, femtosecond molecular dynamics simulations were performed to create a-Si/c-Si stacks, using the machine learning-based Gaussian approximation potential. Second, we created shocked clusters by a cluster blaster method. Third, the shocked clusters were analyzed to identify which of them supported electronic defects. Fourth, the distribution of energy barriers that control the generation of these electronic defects was determined. Fifth, an accelerated Monte Carlo method was developed to simulate the thermally activated time-dependent defect generation across the barriers. Our main conclusions are as follows. (1) The degradation of a-Si/c-Si heterojunction solar cells via defect generation is controlled by a broad distribution of energy barriers. (2) We developed the SolDeg platform to track the microscopic dynamics of defect generation across this wide barrier distribution and determined the time-dependent defect density N(t) from femtoseconds to gigaseconds, over 24 orders of magnitude in time. (3) We have shown that a stretched exponential analytical form can successfully describe the defect generation N(t) over at least 10 orders of magnitude in time. (4) We found that in relative terms, Voc degrades at a rate of 0.2%/year over the first year, slowing with advancing time. (5) We developed the time correspondence curve to calibrate and validate the accelerated testing of solar cells. We found a compellingly simple scaling relationship between accelerated and normal times tnormal ∝ taccelT(accel)/T(normal). (6) We also carried out experimental studies of defect generation in a-Si:H/c-Si stacks. We found a relatively high degradation rate at early times that slowed considerably at longer time scales.

5.
J Vis Exp ; (132)2018 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-29553551

RESUMEN

The quantification of X-ray fluorescence (XRF) microscopy maps by fitting the raw spectra to a known standard is crucial for evaluating chemical composition and elemental distribution within a material. Synchrotron-based XRF has become an integral characterization technique for a variety of research topics, particularly due to its non-destructive nature and its high sensitivity. Today, synchrotrons can acquire fluorescence data at spatial resolutions well below a micron, allowing for the evaluation of compositional variations at the nanoscale. Through proper quantification, it is then possible to obtain an in-depth, high-resolution understanding of elemental segregation, stoichiometric relationships, and clustering behavior. This article explains how to use the MAPS fitting software developed by Argonne National Laboratory for the quantification of full 2-D XRF maps. We use as an example results from a Cu(In,Ga)Se2 solar cell, taken at the Advanced Photon Source beamline 2-ID-D at Argonne National Laboratory. We show the standard procedure for fitting raw data, demonstrate how to evaluate the quality of a fit and present the typical outputs generated by the program. In addition, we discuss in this manuscript certain software limitations and offer suggestions for how to further correct the data to be numerically accurate and representative of spatially resolved, elemental concentrations.


Asunto(s)
Fluorescencia , Microscopía/métodos , Espectrometría por Rayos X/métodos
6.
J Synchrotron Radiat ; 24(Pt 1): 288-295, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009569

RESUMEN

The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer-Lambert's law, formulae are presented in a general integral form and numerically applicable framework. The procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.

7.
ACS Nano ; 9(5): 5326-32, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25868985

RESUMEN

Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 2D systems such as WTe2, silicone, and phosphorene.

10.
Inorg Chem ; 47(21): 10009-16, 2008 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-18831580

RESUMEN

Phase-pure BiCuOSe, which is isostructural to the layered p-type transparent conductor LaCuOS, has been synthesized in high yield by a single-step hydrothermal reaction at low temperature (250 degrees C) and pressure (<20 atm). A moderate reaction temperature of 250 degrees C was sufficiently high to solubilize both Bi2O3 and Cu2O and stabilize monovalent copper and low enough to impede the oxidation of dianionic selenium. BiCuOSe exhibits a relatively high electrical conductivity (sigma approximately 3.3 S cm(-1)) and a reduced band gap (E(g) = 0.75 eV), which compare favorably with the optoelectronic properties of BiCuOS and the cerium-based oxysulfides, CeAgOS and CeCuOS.

11.
Inorg Chem ; 47(7): 2696-705, 2008 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-18269235

RESUMEN

A single-step, low-temperature (<210 degrees C) and -pressure (<20 atm) hydrothermal method has been developed to synthesize a series of silver delafossites, AgBO2 (B = Al, Ga, Sc, and In). Experimental and computational studies were performed to understand the optical and electric properties of these silver delafossites, including the first in-depth study of AgAlO2 and AgScO2. Their properties were examined as a function of the trivalent cation radius and compared to those of copper delafossites to elucidate the role of both the A- and B-site cations. While optical band gaps for silver delafossites were larger and visible light absorption was lower than values previously reported for polycrystalline powder samples of copper delafossites, the conductivities of silver delafossites are similar or lower. Electronic structure calculations indicate that these properties are due to the scarcity of silver 4d states just below the valence band maximum.

12.
Inorg Chem ; 46(25): 10741-8, 2007 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-17999493

RESUMEN

BiCuOS, which is isostructural to the layered rare-earth oxysulfides LnCuOS (Ln = La-Eu), was synthesized by a single-step hydrothermal reaction at low temperature (250 degrees C) and pressure (<20 atm). Particular emphasis is placed on how the selection of the proper reaction conditions, such as temperature and pH, achieves a mutual high solubility of the metal-oxide reactants, Bi2O3 and Cu2O, and thus generates BiCuOS in a good yield. The optical and electrical properties of BiCuOS were measured to determine the influence of replacing a rare-earth cation with bismuth. The electrical conductivity of BiCuOS is increased over that of certain layered rare-earth oxysulfides, LnCuOS (Ln = La, Pr, and Nd), and is similar to that of the cerium members, CeCuOS and CeAgOS. Band structure calculations reveal that, similar to other potential transparent conductors containing sixth-row elements, relativistic effects significantly lower the energy of the conduction band, and thus narrow the optical band gap. These low-energy conduction bands are responsible for the electrical and optical properties of BiCuOS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...