Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Intervalo de año de publicación
1.
Circ Res ; 116(4): 642-52, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25556206

RESUMEN

RATIONALE: In human genetic studies a single nucleotide polymorphism within the salt-inducible kinase 1 (SIK1) gene was associated with hypertension. Lower SIK1 activity in vascular smooth muscle cells (VSMCs) leads to decreased sodium-potassium ATPase activity, which associates with increased vascular tone. Also, SIK1 participates in a negative feedback mechanism on the transforming growth factor-ß1 signaling and downregulation of SIK1 induces the expression of extracellular matrix remodeling genes. OBJECTIVE: To evaluate whether reduced expression/activity of SIK1 alone or in combination with elevated salt intake could modify the structure and function of the vasculature, leading to higher blood pressure. METHODS AND RESULTS: SIK1 knockout (sik1(-/-)) and wild-type (sik1(+/+)) mice were challenged to a normal- or chronic high-salt intake (1% NaCl). Under normal-salt conditions, the sik1(-/-) mice showed increased collagen deposition in the aorta but similar blood pressure compared with the sik1(+/+) mice. During high-salt intake, the sik1(+/+) mice exhibited an increase in SIK1 expression in the VSMCs layer of the aorta, whereas the sik1(-/-) mice exhibited upregulated transforming growth factor-ß1 signaling and increased expression of endothelin-1 and genes involved in VSMC contraction, higher systolic blood pressure, and signs of cardiac hypertrophy. In vitro knockdown of SIK1 induced upregulation of collagen in aortic adventitial fibroblasts and enhanced the expression of contractile markers and of endothelin-1 in VSMCs. CONCLUSIONS: Vascular SIK1 activation might represent a novel mechanism involved in the prevention of high blood pressure development triggered by high-salt intake through the modulation of the contractile phenotype of VSMCs via transforming growth factor-ß1-signaling inhibition.


Asunto(s)
Aorta/enzimología , Presión Arterial , Hipertensión/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Remodelación Vascular , Adventicia/enzimología , Adventicia/patología , Animales , Aorta/patología , Aorta/fisiopatología , Células Cultivadas , Colágeno/metabolismo , Endotelina-1/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Genotipo , Humanos , Hipertensión/etiología , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Ratones Noqueados , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Natriuresis , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal , Cloruro de Sodio Dietético , Sistema Nervioso Simpático/fisiopatología , Transfección , Factor de Crecimiento Transformador beta1/metabolismo , Vasoconstricción
2.
PLoS One ; 9(4): e95771, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24752134

RESUMEN

Cardiac left ventricle hypertrophy (LVH) constitutes a major risk factor for heart failure. Although LVH is most commonly caused by chronic elevation in arterial blood pressure, reduction of blood pressure to normal levels does not always result in regression of LVH, suggesting that additional factors contribute to the development of this pathology. We tested whether genetic preconditions associated with the imbalance in sodium homeostasis could trigger the development of LVH without concomitant increases in blood pressure. The results showed that the presence of a hypertensive variant of α-adducin gene in Milan rats (before they become hypertensive) resulted in elevated expression of genes associated with LVH, and of salt-inducible kinase 2 (SIK2) in the left ventricle (LV). Moreover, the mRNA expression levels of SIK2, α-adducin, and several markers of cardiac hypertrophy were positively correlated in tissue biopsies obtained from human hearts. In addition, we found in cardiac myocytes that α-adducin regulates the expression of SIK2, which in turn mediates the effects of adducin on hypertrophy markers gene activation. Furthermore, evidence that SIK2 is critical for the development of LVH in response to chronic high salt diet (HS) was obtained in mice with ablation of the sik2 gene. Increases in the expression of genes associated with LVH, as well as increases in LV wall thickness upon HS, occurred only in sik2+/+ but not in sik2-/- mice. Thus LVH triggered by HS or the presence of a genetic variant of α-adducin requires SIK2 and is independent of elevated blood pressure. Inhibitors of SIK2 may constitute part of a novel therapeutic regimen aimed at prevention/regression of LVH.


Asunto(s)
Cardiomegalia/prevención & control , Hipertrofia Ventricular Izquierda/prevención & control , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruro de Sodio Dietético/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/enzimología , Humanos , Hipertrofia Ventricular Izquierda/enzimología , Inmunohistoquímica , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Ratas
3.
Proc Natl Acad Sci U S A ; 110(14): 5600-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23503843

RESUMEN

To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor ß1 (TGFß1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na(+), K(+)-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function.


Asunto(s)
Aldosterona/sangre , Regulación de la Expresión Génica/fisiología , Hiperaldosteronismo/etiología , Natriuresis/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Amilorida/farmacología , Angiotensina II/sangre , Animales , Presión Sanguínea/efectos de los fármacos , Cartilla de ADN/genética , Regulación de la Expresión Génica/genética , Tasa de Filtración Glomerular/fisiología , Hiperaldosteronismo/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Renina/sangre , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espironolactona/farmacología , Factor de Crecimiento Transformador beta1/genética , Urinálisis
4.
PLoS One ; 7(5): e37803, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22662228

RESUMEN

Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3(-/-) mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3(-/-) mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3(-/-) mice. Lipid metabolism disorders in Sik3(-/-) mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice.


Asunto(s)
Glucosa/metabolismo , Metabolismo de los Lípidos , Proteínas Serina-Treonina Quinasas/genética , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Ácido Cólico/metabolismo , Dieta Alta en Grasa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Homeostasis/genética , Hipoglucemia/genética , Hipoglucemia/metabolismo , Metabolismo de los Lípidos/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
5.
FASEB J ; 26(8): 3230-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22522110

RESUMEN

The protein kinase liver kinase B1 (LKB1) regulates cell polarity and intercellular junction stability. Also, LKB1 controls the activity of salt-inducible kinase 1 (SIK1). The role and relevance of SIK1 and its downstream effectors in linking the LKB1 signals within these processes are partially understood. We hypothesize that SIK1 may link LKB1 signals to the maintenance of epithelial junction stability by regulating E-cadherin expression. Results from our studies using a mouse lung alveolar epithelial (MLE-12) cell line or human renal proximal tubule (HK2) cell line transiently or stably lacking the expression of SIK1 (using SIK1 siRNAs or shRNAs), or with its expression abrogated (sik1(+/+) vs. sik1(-/-) mice), indicate that suppression of SIK1 (∼40%) increases the expression of the transcriptional repressors Snail2 (∼12-fold), Zeb1 (∼100%), Zeb2 (∼50%), and TWIST (∼20-fold) by activating cAMP-response element binding protein. The lack of SIK1 and activation of transcriptional repressors decreases the availability of E-cadherin (mRNA and protein expression by ∼100 and 80%, respectively) and the stability of intercellular junctions in epithelia (decreases in transepithelial resistance). Furthermore, LKB1-mediated increases in E-cadherin expression are impaired in cells where SIK1 has been disabled. We conclude that SIK1 is a key regulator of E-cadherin expression, and thereby contributes to the stability of intercellular junctions.


Asunto(s)
Cadherinas/biosíntesis , Uniones Intercelulares/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Túbulos Renales Proximales/metabolismo , Ratones , Factores de Transcripción de la Familia Snail , Factores de Transcripción/biosíntesis
6.
Am J Physiol Heart Circ Physiol ; 303(1): H57-65, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22467310

RESUMEN

Cardiac hypertrophy (CH) generally occurs as the result of the sustained mechanical stress caused by elevated systemic arterial blood pressure (BP). However, in animal models, elevated salt intake is associated with CH even in the absence of significant increases in BP. We hypothesize that CH is not exclusively the consequence of mechanical stress but also of other factors associated with elevated BP such as abnormal cell sodium homeostasis. We examined the effect of small increases in intracellular sodium concentration ([Na(+)](i)) on transcription factors and genes associated with CH in a cardiac cell line. Increases in [Na(+)](i) led to a time-dependent increase in the expression levels of mRNA for natriuretic peptide and myosin heavy chain genes and also increased myocyte enhancer factor (MEF)2/nuclear factor of activated T cell (NFAT) transcriptional activity. Increases in [Na(+)](i) are associated with activation of salt-inducible kinase 1 (snflk-1, SIK1), a kinase known to be critical for cardiac development. Moreover, increases in [Na(+)](i) resulted in increased SIK1 expression. Sodium did not increase MEF2/NFAT activity or gene expression in cells expressing a SIK1 that lacked kinase activity. The mechanism by which SIK1 activated MEF2 involved phosphorylation of HDAC5. Increases in [Na(+)](i) activate SIK1 and MEF2 via a parallel increase in intracellular calcium through the reverse mode of Na(+)/Ca(2+)-exchanger and activation of CaMK1. These data obtained in a cardiac cell line suggest that increases in intracellular sodium could influence myocardial growth by controlling transcriptional activation and gene expression throughout the activation of the SIK1 network.


Asunto(s)
Expresión Génica/efectos de los fármacos , Miocitos Cardíacos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Sodio/farmacología , Transcripción Genética/efectos de los fármacos , Biopsia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Línea Celular , Atrios Cardíacos/citología , Histona Desacetilasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Monensina/farmacología , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción NFATC/metabolismo , Fosforilación , Plásmidos , ARN/biosíntesis , ARN/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transfección
7.
J Hypertens ; 29(12): 2395-403, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22045124

RESUMEN

OBJECTIVES: Essential hypertension is a complex condition whose cause involves the interaction of multiple genetic and environmental factors such as salt intake. Salt-inducible kinase 1 (SIK1) is a sucrose-nonfermenting-like kinase isoform that belongs to the AMPK (5' adenosine monophosphate-activated protein kinase) family. SIK1 activity is increased by high salt intake and plays an essential role in regulating the plasma membrane Na(+),K(+)-ATPase. The objective of this study was to examine whether SIK1 is present in vascular smooth muscle cells (VSMCs) and endothelial cells, whether it affects VSMC Na(+),K(+)-ATPase activity and whether human SIK1 (hSIK1) represents a potential candidate for blood pressure regulation. METHODS: Localization of SIK1 was performed using immunohistochemistry, mRNA and western blot. Functional assays (Na(+),K(+)-ATPase activity) were performed in VSMCs derived from rat aorta. Genotype-phenotype association studies were performed in three Swedish and one Japanese population-based cohorts. RESULTS: SIK1 was localized in human VSMCs and endothelial cells, as well as a cell line derived from rat aorta. A nonsynonymous single nucleotide polymorphism in the hSIK1 gene exon 3 (C→T, rs3746951) results in the amino acid change (15)Gly→Ser in the SIK1 protein. SIK1-(15)Ser was found to increase plasma membrane Na(+),K(+)-ATPase activity in cultured VSMC line from rat aorta. Genotype-phenotype association studies in three Swedish and one Japanese population-based cohorts suggested that T allele (coding for (15)Ser) was associated with lower blood pressure (P = 0.005 for SBP and P = 0.002 for DBP) and with a decrease in left ventricular mass (P = 0.048). CONCLUSION: The hSIK1 appears to be of potential relevance within VSMC function and blood pressure regulation.


Asunto(s)
Presión Sanguínea/fisiología , Endotelio Vascular/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Aorta Abdominal/enzimología , Aorta Abdominal/patología , Línea Celular , Endotelio Vascular/citología , Expresión Génica , Genotipo , Humanos , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/patología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Ratas
8.
Biochem Biophys Res Commun ; 409(1): 28-33, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21549091

RESUMEN

Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na(+), K(+)-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to ß-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na(+), K(+)-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na(+), K(+)-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na(+), K(+)-ATPase activity and the incorporation of Na(+), K(+)-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Alveolos Pulmonares/enzimología , Mucosa Respiratoria/enzimología , Sodio/metabolismo , Animales , Broncodilatadores/farmacología , Línea Celular , Humanos , Transporte Iónico/efectos de los fármacos , Isoproterenol/farmacología , Ratones , Proteínas Serina-Treonina Quinasas/genética , Alveolos Pulmonares/efectos de los fármacos , Ratas , Mucosa Respiratoria/efectos de los fármacos
9.
Biochim Biophys Acta ; 1802(12): 1140-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20347966

RESUMEN

Sodium is the main determinant of body fluid distribution. Sodium accumulation causes water retention and, often, high blood pressure. At the cellular level, the concentration and active transport of sodium is handled by the enzyme Na(+),K(+)-ATPase, whose appearance enabled evolving primitive cells to cope with osmotic stress and contributed to the complexity of mammalian organisms. Na(+),K(+)-ATPase is a platform at the hub of many cellular signaling pathways related to sensing intracellular sodium and dealing with its detrimental excess. One of these pathways relies on an intracellular sodium-sensor network with the salt-inducible kinase 1 (SIK1) at its core. When intracellular sodium levels rise, and after the activation of calcium-related signals, this network activates the Na(+),K(+)-ATPase and expel the excess of sodium from the cytosol. The SIK1 network also mediates sodium-independent signals that modulate the activity of the Na(+),K(+)-ATPase, like dopamine and angiotensin, which are relevant per se in the development of high blood pressure. Animal models of high blood pressure, with identified mutations in components of multiple pathways, also have alterations in the SIK1 network. The introduction of some of these mutants into normal cells causes changes in SIK1 activity as well. Some cellular processes related to the metabolic syndrome, such as insulin effects on the kidney and other tissues, also appear to involve the SIK1. Therefore, it is likely that this protein, by modulating active sodium transport and numerous hormonal responses, represents a "crossroad" in the development and adaptation to high blood pressure and associated diseases.


Asunto(s)
Presión Sanguínea , Señalización del Calcio , Citosol/enzimología , Riñón/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Sodio/metabolismo , Animales , Humanos , Insulina/genética , Insulina/metabolismo , Síndrome Metabólico/enzimología , Síndrome Metabólico/genética , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
10.
Life Sci ; 86(3-4): 73-8, 2010 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19909757

RESUMEN

Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na(+),K(+)-ATPase activity. Stimulation of Na(+),K(+)-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na(+) retention, whereas inhibited Na(+),K(+)-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na(+),K(+)-ATPase activity, resulting in increased intracellular Na(+) and Ca(2+) concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated.


Asunto(s)
Hipertensión/etiología , Cloruro de Sodio Dietético/efectos adversos , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Animales , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/enzimología , Hipertensión/fisiopatología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Ouabaína/metabolismo , Cloruro de Sodio Dietético/farmacocinética , Resistencia Vascular/efectos de los fármacos
11.
J Hypertens ; 27(12): 2452-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19657284

RESUMEN

OBJECTIVES: Because a newly described salt-inducible kinase 1 (SIK1) network is responsible for increases in active cell sodium transport in response to elevated intracellular sodium, we hypothesized that this network could mediate the effects of the mutant (hypertensive) form of alpha-adducin on Na,K-ATPase activity. METHODS: Studies were performed in normotensive and hypertensive Milan rats and in a cell line of proximal tubule origin expressing transiently variants of alpha-adducin (human G460W/S586C; rat F316Y) that are associated with elevated blood pressure and result in increased Na,K-ATPase activity. Na,K-ATPase activity was determined as ouabain-sensitive rubidium transport. RESULTS: SIK1 activity (T182 phosphorylation) was significantly elevated in renal proximal tubule cells from Milan hypertensive rats (carrying a alpha-adducin mutation) when compared with normotensive controls. Similarly, SIK1 activity (T182 phosphorylation) was elevated in a normal renal proximal tubule cell line when transfected with the alpha-adducin variant carrying the human hypertensive mutation. Blocking the SIK1 network using negative mutants as well as different stages of its activation pathway prevented the effects induced by the hypertensive alpha-adducin. CONCLUSION: The SIK1 network may constitute an alternative target by which agents can modulate active sodium transport in renal epithelia and avoid the increases in systemic blood pressure that are associated with genetic mutations in the human alpha-adducin molecule.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Hipertensión/genética , Túbulos Renales Proximales/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Sodio/metabolismo , Animales , Proteínas de Unión a Calmodulina/metabolismo , Línea Celular , Células Epiteliales , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Zarigüeyas , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Mutantes , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transfección , Resistencia Vascular/genética
12.
J Biol Chem ; 283(25): 17561-7, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18420589

RESUMEN

Motion of integral membrane proteins to the plasma membrane in response to G-protein-coupled receptor signals requires selective cargo recognition motifs that bind adaptor protein 1 and clathrin. Angiotensin II, through the activation of AT1 receptors, promotes the recruitment to the plasma membrane of Na,K-ATPase molecules from intracellular compartments. We present evidence to demonstrate that a tyrosine-based sequence (IVVY-255) present within the Na,K-ATPase alpha1-subunit is involved in the binding of adaptor protein 1. Mutation of Tyr-255 to a phenylalanine residue in the Na,K-ATPase alpha1-subunit greatly reduces the angiotensin II-dependent activation of Na,K-ATPase, recruitment of Na,K-ATPase molecules to the plasma membrane, and association of adaptor protein 1 with Na,K-ATPase alpha1-subunit molecules. To determine protein-protein interaction, we used fluorescence resonance energy transfer between fluorophores attached to the Na,K-ATPase alpha1-subunit and adaptor protein 1. Although angiotensin II activation of AT1 receptors induces a significant increase in the level of fluorescence resonance energy transfer between the two molecules, this effect was blunted in cells expressing the Tyr-255 mutant. Thus, results from different methods and techniques suggest that the Tyr-255-based sequence within the NKA alpha1-subunit is the site of adaptor protein 1 binding in response to the G-protein-coupled receptor signals produced by angiotensin II binding to AT1 receptors.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Membrana Celular/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tirosina/química , Angiotensina II/química , Animales , Línea Celular , Activación Enzimática , Mutación , Zarigüeyas , Fenilalanina/química , Unión Proteica , Conformación Proteica , Ratas , Transfección
13.
Proc Natl Acad Sci U S A ; 104(43): 16922-7, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17939993

RESUMEN

In mammalian cells, active sodium transport and its derived functions (e.g., plasma membrane potential) are dictated by the activity of the Na(+),K(+)-ATPase (NK), whose regulation is essential for maintaining cell volume and composition, as well as other vital cell functions. Here we report the existence of a salt-inducible kinase-1 (SIK1) that associates constitutively with the NK regulatory complex and is responsible for increases in its catalytic activity following small elevations in intracellular sodium concentrations. Increases in intracellular sodium are paralleled by elevations in intracellular calcium through the reversible Na(+)/Ca(2+) exchanger, leading to the activation of SIK1 (Thr-322 phosphorylation) by a calcium calmodulin-dependent kinase. Activation of SIK1 results in the dephosphorylation of the NK alpha-subunit and an increase in its catalytic activity. A protein phosphatase 2A/phosphatase methylesterase-1 (PME-1) complex, which constitutively associates with the NK alpha-subunit, is activated by SIK1 through phosphorylation of PME-1 and its dissociation from the complex. These observations illustrate the existence of a distinct intracellular signaling network, with SIK1 at its core, which is triggered by a monovalent cation (Na(+)) and links sodium permeability to its active transport.


Asunto(s)
Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sodio/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Hidrolasas de Éster Carboxílico/metabolismo , Catálisis/efectos de los fármacos , Línea Celular , Activación Enzimática/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Humanos , Transporte Iónico/efectos de los fármacos , Riñón/citología , Riñón/efectos de los fármacos , Riñón/enzimología , Zarigüeyas , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/metabolismo , Sodio/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
14.
Semin Nephrol ; 26(5): 386-92, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17071332

RESUMEN

Na(+), K(+)-adenosine triphosphatase is a ubiquitous enzyme present in higher eukaryotes responsible for the maintenance of ionic gradients across the plasma membrane. It creates appropriate conditions for critical cellular processes such as secondary transport of solutes and water, for pH regulation, and also for creating an electrical potential that gives singular qualities to excitable cells. It also served as a platform for a higher level of cellular complexity because many important signaling networks appear to be downstream events of the pump's function. Renal physiology and pathology are affected significantly by its presence, and it seems that both molecular and pharmacologic manipulations of its action can create different venues to deal with diverse disease states.


Asunto(s)
Membrana Celular/enzimología , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Animales , Evolución Biológica , Humanos
15.
FEBS Lett ; 580(21): 5067-70, 2006 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-16949583

RESUMEN

Dopamine is a major regulator of sodium reabsorption in proximal tubule epithelia. It induces the endocytosis of plasma membrane Na,K-ATPase molecules, and this results in a reduced capacity of the cells to transport sodium. Dopamine induces the phosphorylation of Ser-18 in the alpha1-subunit of Na,K-ATPase. Fluorescence resonance energy transfer analysis of cells expressing YFP-alpha1 and beta1-CFP reveals that treatment of the cells with dopamine increases energy transfer between CFP and YFP. This is consistent with a protein conformational change that results in the N-terminal end of alpha1 moving closer to the internal face of the plasma membrane.


Asunto(s)
Endocitosis , Transferencia Resonante de Energía de Fluorescencia , Subunidades de Proteína/química , Receptores Acoplados a Proteínas G/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Alcaloides , Androstadienos/farmacología , Animales , Benzofenantridinas , Células Cultivadas , Dopamina/farmacología , Endocitosis/efectos de los fármacos , Zarigüeyas , Fenantridinas/farmacología , Conformación Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas , Wortmanina
16.
Am J Respir Cell Mol Biol ; 35(1): 127-32, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16498080

RESUMEN

Activation of G protein-coupled receptor by dopamine and hypoxia-generated reactive oxygen species promote Na+,K+-ATPase endocytosis. This effect is clathrin dependent and involves the activation of protein kinase C (PKC)-zeta and phosphorylation of the Na+,K+-ATPase alpha-subunit. Because the incorporation of cargo into clathrin vesicles requires association with adaptor proteins, we studied whether phosphorylation of adaptor protein (AP)-2 plays a role in its binding to the Na+,K+-ATPase alpha-subunit and thereby in its endocytosis. Dopamine induces a time-dependent phosphorylation of the AP-2 mu2 subunit. Using specific inhibitors and dominant-negative mutants, we establish that this effect was mediated by activation of the adaptor associated kinase 1/PKC-zeta isoform. Expression of the AP-2 mu2 bearing a mutation in its phosphorylation site (T156A) prevented Na+,K+-ATPase endocytosis and changes in activity induced by dopamine. Similarly, in lung alveolar epithelial cells, hypoxia-induced endocytosis of Na+,K+-ATPase requires the binding of AP-2 to the tyrosine-based motif (Tyr-537) located in the Na+,K+-ATPase alpha-subunit, and this effect requires phosphorylation of the AP-2 mu2 subunit. We conclude that phosphorylation of AP-2 mu2 subunit is essential for Na+,K+-ATPase endocytosis in response to a variety of signals, such as dopamine or reactive oxygen species.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Endocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/farmacología , Receptores Acoplados a Proteínas G/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Dopamina/farmacología , Humanos , Modelos Biológicos , Mutación/genética , Zarigüeyas , Fosforilación/efectos de los fármacos , Unión Proteica , Tirosina/metabolismo
17.
Am J Respir Cell Mol Biol ; 33(5): 432-7, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16234332

RESUMEN

Stimulation of dopamine receptors in the lung or kidney epithelia has distinct and opposite effects on the function of Na,K-ATPase, which results in increased Na(+) absorption across the alveolar epithelium and increased sodium excretion via the kidney epithelium. In the lung, dopamine increases Na,K-ATPase by increasing cell basolateral surface expression of Na(+),K(+)-ATPase molecules, whereas in the kidney epithelia it decreases Na(+),K(+)-ATPase activity by removing active units from the plasma membrane by endocytosis. The opposite effects of dopamine over the same target (the Na(+),K(+)-ATPase) involve the activation of a distinct signaling network that it is target specific, and has a different spatial resolution. Understanding the specific signaling pathways involved in these actions of dopamine and their hierarchical organization may facilitate the drug discovery process that could lead to the design of new therapeutic approaches to clear lung edema in patients with acute lung injury and to decrease fluid overload during congestive heart failure and hypertension.


Asunto(s)
Dopamina/fisiología , Riñón/fisiología , Enfermedades Pulmonares/fisiopatología , Pulmón/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Equilibrio Hidroelectrolítico , Animales , Epitelio/fisiología , Epitelio/fisiopatología , Humanos , Riñón/citología , Riñón/fisiopatología , Pulmón/citología , Pulmón/fisiopatología , Ratas , Transducción de Señal
18.
Semin Nephrol ; 25(5): 322-7, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16139687

RESUMEN

In the current report we review the results that lay grounds for the model of intracellular sodium-mediated dopamine-induced endocytosis of Na,K-ATPase. Under conditions of a high salt diet, dopamine activates PKCzeta, which phosphorylates NKA alpha1 Ser-18. The phosphorylation produces a conformational change of alpha1 NH2-terminus, which through interaction with other domains of alpha1 exposes PI3K- and AP-2-binding domains. PI3K bound to the NKA alpha1 induces the recruitment and activation of other proteins involved in endocytosis, and PI3K-generated 3-phosphoinositides affect the local cytoskeleton and modify the biophysical conditions of the membrane for development of clathrin-coated pits. Plasma membrane phosphorylated NKA is internalized to specialized intracellular compartments where the NKA will be dephosphorylated. The NKA internalization results in a reduced Na+ transport by proximal tubule epithelial cells.


Asunto(s)
Cardiotónicos/farmacología , Dopamina/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Túbulos Renales Proximales/citología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Endocitosis/efectos de los fármacos , Humanos , Complejos Multiproteicos/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas de Transporte Vesicular/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo
19.
J Biol Chem ; 280(16): 16272-7, 2005 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15722354

RESUMEN

Clathrin-dependent endocytosis of Na(+),K(+)-ATPase molecules in response to G protein-coupled receptor signals is triggered by phosphorylation of the alpha-subunit and the binding of phosphoinositide 3-kinase. In this study, we describe a molecular mechanism linking phosphorylation of Na(+),K(+)-ATPase alpha-subunit to binding and activation of phosphoinositide 3-kinase. Co-immunoprecipitation studies, as well as experiments using confocal microscopy, revealed that dopamine favored the association of 14-3-3 protein with the basolateral plasma membrane and its co-localization with the Na(+),K(+)-ATPase alpha-subunit. The functional relevance of this interaction was established in opossum kidney cells expressing a 14-3-3 dominant negative mutant, where dopamine failed to decrease Na(+),K(+)-ATPase activity and to promote its endocytosis. The phosphorylated Ser-18 residue within the alpha-subunit N terminus is critical for 14-3-3 binding. Activation of phosphoinositide 3-kinase by dopamine during Na(+),K(+)-ATPase endocytosis requires the binding of the kinase to a proline-rich domain within the alpha-subunit, and this effect was blocked by the presence of a 14-3-3 dominant negative mutant. Thus, the 14-3-3 protein represents a critical linking mechanism for recruiting phosphoinositide 3-kinase to the site of Na(+),K(+)-ATPase endocytosis.


Asunto(s)
Proteínas 14-3-3/metabolismo , Endocitosis/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas 14-3-3/genética , Secuencias de Aminoácidos , Animales , Sitios de Unión , Técnicas de Transferencia de Gen , Fosforilación , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
20.
Circ Res ; 95(11): 1100-8, 2004 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-15528469

RESUMEN

Alpha-adducin polymorphism in humans is associated with abnormal renal sodium handling and high blood pressure. The mechanisms by which mutations in adducin affect the renal set point for sodium excretion are not known. Decreases in Na+,K+-ATPase activity attributable to endocytosis of active units in renal tubule cells by dopamine regulates sodium excretion during high-salt diet. Milan rats carrying the hypertensive adducin phenotype have a higher renal tubule Na+,K+-ATPase activity, and their Na+,K+-ATPase molecules do not undergo endocytosis in response to dopamine as do those of the normotensive strain. Dopamine fails to promote the interaction between adaptins and the Na+,K+-ATPase because of adaptin-mu2 subunit hyperphosphorylation. Expression of the hypertensive rat or human variant of adducin into normal renal epithelial cells recreates the hypertensive phenotype with higher Na+,K+-ATPase activity, mu2-subunit hyperphosphorylation, and impaired Na+,K+-ATPase endocytosis. Thus, increased renal Na+,K+-ATPase activity and altered sodium reabsorption in certain forms of hypertension could be attributed to a mutant form of adducin that impairs the dynamic regulation of renal Na+,K+-ATPase endocytosis in response to natriuretic signals.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Proteínas del Citoesqueleto/fisiología , Hipertensión/genética , Túbulos Renales/enzimología , Proteínas de Microfilamentos/fisiología , Natriuresis/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Complejo 2 de Proteína Adaptadora/química , Subunidades mu de Complejo de Proteína Adaptadora/química , Sustitución de Aminoácidos , Animales , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Línea Celular/efectos de los fármacos , Línea Celular/enzimología , Proteínas del Citoesqueleto/genética , Dopamina/farmacología , Endocitosis/efectos de los fármacos , Endosomas/enzimología , Epitelio/enzimología , Humanos , Hipertensión/enzimología , Hipertensión/fisiopatología , Túbulos Renales/efectos de los fármacos , Proteínas de Microfilamentos/genética , Mutagénesis Sitio-Dirigida , Natriuresis/efectos de los fármacos , Natriuresis/genética , Zarigüeyas , Fosfoproteínas Fosfatasas/metabolismo , Mapeo de Interacción de Proteínas , Subunidades de Proteína , Ratas , Ratas Mutantes , Proteínas Recombinantes de Fusión/fisiología , Relación Estructura-Actividad , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...