Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 3(10): 1251-1268, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723209

RESUMEN

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.


Asunto(s)
Lamina Tipo A , Macrófagos Alveolares , Animales , Ratones , Lamina Tipo A/genética , Membrana Nuclear , Pulmón , Envejecimiento/genética , Inestabilidad Genómica
2.
Sci Rep ; 12(1): 17935, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333365

RESUMEN

Current literature highlights the need for precise histological quantitative assessment of fibrosis which cannot be achieved by conventional scoring systems, inherent to their discontinuous values and reader-dependent variability. Here we used an automated image analysis software to measure fibrosis deposition in two relevant preclinical models of liver fibrosis, and established correlation with other quantitative fibrosis descriptors. Longitudinal quantification of liver fibrosis was carried out during progression of post-necrotic (CCl4-induced) and metabolic (HF-CDAA feeding) models of chronic liver disease in mice. Whole slide images of picrosirius red-stained liver sections were analyzed using a fully automated, unsupervised software. Fibrosis was characterized by a significant increase of collagen proportionate area (CPA) at weeks 3 (CCl4) and 8 (HF-CDAA) with a progressive increase up to week 18 and 24, respectively. CPA was compared to collagen content assessed biochemically by hydroxyproline assay (HYP) and by standard histological staging systems. CPA showed a high correlation with HYP content for CCl4 (r = 0.8268) and HF-CDAA (r = 0.6799) models. High correlations were also found with Ishak score or its modified version (r = 0.9705) for CCl4 and HF-CDAA (r = 0.9062) as well as with NASH CRN for HF-CDAA (r = 0.7937). Such correlations support the use of automated digital analysis as a reliable tool to evaluate the dynamics of liver fibrosis and efficacy of antifibrotic drug candidates in preclinical models.


Asunto(s)
Cirrosis Hepática , Hígado , Ratones , Animales , Cirrosis Hepática/patología , Hígado/metabolismo , Fibrosis , Colágeno/metabolismo , Hidroxiprolina/metabolismo
3.
Mol Metab ; 65: 101588, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36055577

RESUMEN

Thermogenic fat differentiation and function can be promoted through multiple pathways, resulting in a common cell phenotype characterized by the expression of Uncoupling Protein-1 and the ability to dissipate energy, but local and systemic stimuli are necessary to promote adequate thermogenic fat vascularization, which is a precondition for the transport of substrate and the dissipation of heat. Angiopoietin-2 is an important driver of vascularization, and its transcription is in part promoted by estrogen signaling. In this study we demonstrate that adipose tissue-specific knock out of Angiopoietin-2 causes a female-specific reduced thermogenic fat differentiation and function, resulting in obesity and impaired glucose tolerance with end-organ features consistent with metabolic syndrome. In humans, angiopoietin-2 levels are higher in females than in males, and are inversely correlated with adiposity and age more strongly in pre-menopause when compared to post-menopause. Collectively, these data indicate a novel and important role for estrogen-mediated Angiopoietin-2 adipose tissue production in the protection against calorie overload in females, and potentially in the development of postmenopausal weight gain.


Asunto(s)
Tejido Adiposo Pardo , Síndrome Metabólico , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Masculino , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Front Med (Lausanne) ; 8: 607720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211981

RESUMEN

Pulmonary fibrosis is characterized by abnormal interstitial extracellular matrix and cellular accumulations. Methods quantifying fibrosis severity in lung histopathology samples are semi-quantitative, subjective, and analyze only portions of sections. We sought to determine whether automated computerized imaging analysis shown to continuously measure fibrosis in mice could also be applied in human samples. A pilot study was conducted to analyze a small number of specimens from patients with Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF) or idiopathic pulmonary fibrosis (IPF). Digital images of entire lung histological serial sections stained with picrosirius red and alcian blue or anti-CD68 antibody were analyzed using dedicated software to automatically quantify fibrosis, collagen, and macrophage content. Automated fibrosis quantification based on parenchymal tissue density and fibrosis score measurements was compared to pulmonary function values or Ashcroft score. Automated fibrosis quantification of HPSPF lung explants was significantly higher than that of IPF lung explants or biopsies and was also significantly higher in IPF lung explants than in IPF biopsies. A high correlation coefficient was found between some automated quantification measurements and lung function values for the three sample groups. Automated quantification of collagen content in lung sections used for digital image analyses was similar in the three groups. CD68 immunolabeled cell measurements were significantly higher in HPSPF explants than in IPF biopsies. In conclusion, computerized image analysis provides access to accurate, reader-independent pulmonary fibrosis quantification in human histopathology samples. Fibrosis, collagen content, and immunostained cells can be automatically and individually quantified from serial sections. Robust automated digital image analysis of human lung samples enhances the available tools to quantify and study fibrotic lung disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...