Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Immunol ; 54(6): e2350761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566526

RESUMEN

In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.


Asunto(s)
Barrera Hematoencefálica , Encefalomielitis Autoinmune Experimental , Células Endoteliales , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Médula Espinal/patología , Médula Espinal/inmunología , Médula Espinal/metabolismo , Linfocitos T CD4-Positivos/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad
2.
J Neuroinflammation ; 21(1): 72, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521959

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT: In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION: Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.


Asunto(s)
Barrera Hematoencefálica , Esclerosis Múltiple , Canales Catiónicos TRPV , Humanos , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Inflamación/metabolismo , Esclerosis Múltiple/patología , Canales Catiónicos TRPV/metabolismo
3.
Acta Neuropathol Commun ; 11(1): 35, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890580

RESUMEN

Signaling by insulin-like growth factor-1 (IGF-1) is essential for the development of the central nervous system (CNS) and regulates neuronal survival and myelination in the adult CNS. In neuroinflammatory conditions including multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), IGF-1 can regulate cellular survival and activation in a context-dependent and cell-specific manner. Notwithstanding its importance, the functional outcome of IGF-1 signaling in microglia/macrophages, which maintain CNS homeostasis and regulate neuroinflammation, remains undefined. As a result, contradictory reports on the disease-ameliorating efficacy of IGF-1 are difficult to interpret, together precluding its potential use as a therapeutic agent. To fill this gap, we here investigated the role of IGF-1 signaling in CNS-resident microglia and border associated macrophages (BAMs) by conditional genetic deletion of the receptor Igf1r in these cell types. Using a series of techniques including histology, bulk RNA sequencing, flow cytometry and intravital imaging, we show that absence of IGF-1R significantly impacted the morphology of both BAMs and microglia. RNA analysis revealed minor changes in microglia. In BAMs however, we detected an upregulation of functional pathways associated with cellular activation and a decreased expression of adhesion molecules. Notably, genetic deletion of Igf1r from CNS-resident macrophages led to a significant weight gain in mice, suggesting that absence of IGF-1R from CNS-resident myeloid cells indirectly impacts the somatotropic axis. Lastly, we observed a more severe EAE disease course upon Igf1r genetic ablation, thus highlighting an important immunomodulatory role of this signaling pathway in BAMs/microglia. Taken together, our work shows that IGF-1R signaling in CNS-resident macrophages regulates the morphology and transcriptome of these cells while significantly decreasing the severity of autoimmune CNS inflammation.


Asunto(s)
Sistema Nervioso Central , Factor I del Crecimiento Similar a la Insulina , Macrófagos , Animales , Ratones , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias
4.
Glia ; 70(11): 2045-2061, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35762739

RESUMEN

Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias , Oligodendroglía/metabolismo , Oxidación-Reducción , Médula Espinal/metabolismo
5.
Glia ; 70(6): 1100-1116, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35188681

RESUMEN

We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Lactancia , Animales , Diferenciación Celular , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Humanos , Macrófagos/metabolismo , Ratones , Nervios Periféricos/metabolismo
6.
Brain Commun ; 3(2): fcab047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977263

RESUMEN

Targeting neuroinflammation in models for infantile and juvenile forms of neuronal ceroid lipofuscinosis (NCL, CLN disease) with the clinically established immunomodulators fingolimod and teriflunomide significantly attenuates the neurodegenerative phenotype when applied preventively, i.e. before the development of substantial neural damage and clinical symptoms. Here, we show that in a mouse model for the early onset and rapidly progressing CLN1 form, more complex clinical phenotypes like disturbed motor coordination and impaired visual acuity are also ameliorated by immunomodulation. Moreover, we show that the disease outcome can be attenuated even when fingolimod and teriflunomide treatment starts after disease onset, i.e. when neurodegeneration is ongoing and clinical symptoms are detectable. In detail, treatment with either drug led to a reduction in T-cell numbers and microgliosis in the CNS, although not to the same extent as upon preventive treatment. Pharmacological immunomodulation was accompanied by a reduction of axonal damage, neuron loss and astrogliosis in the retinotectal system and by reduced brain atrophy. Accordingly, the frequency of myoclonic jerks and disturbed motor coordination were attenuated. Overall, disease alleviation was remarkably substantial upon therapeutic treatment with both drugs, although less robust than upon preventive treatment. To test the relevance of putative immune-independent mechanisms of action in this model, we treated CLN1 mice lacking mature T- and B-lymphocytes. Immunodeficient CLN1 mice showed, as previously reported, an improved neurological phenotype in comparison with genuine CLN1 mice which could not be further alleviated by either of the drugs, reflecting a predominantly immune-related therapeutic mechanism of action. The present study supports and strengthens our previous view that repurposing clinically approved immunomodulators may alleviate the course of CLN1 disease in human patients, even though diagnosis usually occurs when symptoms have already emerged.

7.
J Neuroinflammation ; 17(1): 323, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115477

RESUMEN

BACKGROUND: The neuronal ceroid lipofuscinoses (CLN diseases) are fatal lysosomal storage diseases causing neurodegeneration in the CNS. We have previously shown that neuroinflammation comprising innate and adaptive immune reactions drives axonal damage and neuron loss in the CNS of palmitoyl protein thioesterase 1-deficient (Ppt1-/-) mice, a model of the infantile form of the diseases (CLN1). Therefore, we here explore whether pharmacological targeting of innate immune cells modifies disease outcome in CLN1 mice. METHODS: We applied treatment with PLX3397 (150 ppm in the chow), a potent inhibitor of the colony stimulating factor-1 receptor (CSF-1R) to target innate immune cells in CLN1 mice. Experimental long-term treatment was non-invasively monitored by longitudinal optical coherence tomography and rotarod analysis, as well as analysis of visual acuity, myoclonic jerks, and survival. Treatment effects regarding neuroinflammation, neural damage, and neurodegeneration were subsequently analyzed by histology and immunohistochemistry. RESULTS: We show that PLX3397 treatment attenuates neuroinflammation in CLN1 mice by depleting pro-inflammatory microglia/macrophages. This leads to a reduction of T lymphocyte recruitment, an amelioration of axon damage and neuron loss in the retinotectal system, as well as reduced thinning of the inner retina and total brain atrophy. Accordingly, long-term treatment with the inhibitor also ameliorates clinical outcomes in CLN1 mice, such as impaired motor coordination, visual acuity, and myoclonic jerks. However, we detected a sex- and region-biased efficacy of CSF-1R inhibition, with male microglia/macrophages showing higher responsiveness toward depletion, especially in the gray matter of the CNS. This results in a better treatment outcome in male Ppt1-/- mice regarding some histopathological and clinical readouts and reflects heterogeneity of innate immune reactions in the diseased CNS. CONCLUSIONS: Our results demonstrate a detrimental impact of innate immune reactions in the CNS of CLN1 mice. These findings provide insights into CLN pathogenesis and may guide in the design of immunomodulatory treatment strategies.


Asunto(s)
Aminopiridinas/uso terapéutico , Encéfalo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Pirroles/uso terapéutico , Aminopiridinas/farmacología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Macrófagos/patología , Masculino , Ratones , Microglía/patología , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/patología , Lipofuscinosis Ceroideas Neuronales/inmunología , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Pirroles/farmacología , Retina/efectos de los fármacos , Retina/patología , Factores Sexuales , Linfocitos T/efectos de los fármacos , Linfocitos T/patología , Tomografía de Coherencia Óptica
8.
Front Immunol ; 11: 609921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33746939

RESUMEN

The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.


Asunto(s)
Movimiento Celular , Enfermedades del Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Sistema Mononuclear Fagocítico/metabolismo , Animales , Comunicación Celular , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/inmunología , Enfermedades del Sistema Nervioso Central/patología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/inmunología , Sistema Mononuclear Fagocítico/inmunología , Transducción de Señal
9.
Glia ; 67(2): 277-290, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30565754

RESUMEN

Genetically caused neurological disorders of the central nervous system (CNS) usually result in poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with disease-amplifying neuroinflammation, a feature shared by progressive forms of multiple sclerosis (PMS), another poorly treatable disorder of the CNS. We have previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients fulfilling clinical criteria for multiple sclerosis (MS). These mutations cause a loss of function of the gene product resulting in a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation comprising adaptive immune reactions promotes disease progression in these PLP1 mutant models, opening the possibility to improve disease outcome of the respective disorders by targeting/modulating inflammation. We here show that PLX3397, a potent inhibitor of the CSF-1R and targeting innate immune cells, attenuates neuroinflammation in our models by reducing numbers of resident microglia and attenuating T-lymphocyte recruitment in the CNS. This leads to an amelioration of demyelination, axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the inner retinal composite layer in longitudinal studies using noninvasive optical coherence tomography. Our findings identify microglia as important promoters of neuroinflammation-related neural damage and CSF-1R inhibition as a possible therapeutic strategy not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.


Asunto(s)
Enfermedades del Sistema Nervioso Central/complicaciones , Enfermedades del Sistema Nervioso Central/genética , Inflamación , Microglía/metabolismo , Mutación/genética , Proteína Proteolipídica de la Mielina/genética , Aminopiridinas/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Microglía/ultraestructura , Microscopía Electrónica de Transmisión , Proteína Proteolipídica de la Mielina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/ultraestructura , Pirroles/uso terapéutico , Linfocitos T/efectos de los fármacos , Linfocitos T/patología , Tomografía de Coherencia Óptica
10.
Mol Ther ; 25(8): 1889-1899, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28506594

RESUMEN

CLN diseases are rare lysosomal storage diseases characterized by progressive axonal degeneration and neuron loss in the CNS, manifesting in disability, blindness, and premature death. We have previously demonstrated that, in animal models of infantile and juvenile forms of CLN disease (CLN1 and CLN3, respectively), secondary neuroinflammation in the CNS substantially amplifies neural damage, opening the possibility that immunomodulatory treatment might improve disease outcome. First, we recapitulated the inflammatory phenotype, originally seen in mice in autopsies of CLN patients. We then treated mouse models of CLN1 and CLN3 disease with the clinically approved immunomodulatory compounds fingolimod (0.5 mg/kg/day) and teriflunomide (10 mg/kg/day) by consistent supply in the drinking water for 5 months. The treatment was well tolerated and reduced T cell numbers and microgliosis in the CNS of both models. Moreover, axonal damage, neuron loss, retinal thinning, and brain atrophy were substantially attenuated in both models, along with reduced frequency of myoclonic jerks in Ppt1-/- mice. Based on these findings, and because side effects were not detected, we suggest that clinically approved immune modulators such as fingolimod and teriflunomide may be suitable to attenuate progression of CLN1 and CLN3 disease and, possibly, other orphan diseases with pathogenically relevant neuroinflammation.


Asunto(s)
Crotonatos/farmacología , Clorhidrato de Fingolimod/farmacología , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Toluidinas/farmacología , Adolescente , Adulto , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Niño , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Hidroxibutiratos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Nitrilos , Serina Proteasas/genética , Serina Proteasas/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Tioléster Hidrolasas/deficiencia , Tripeptidil Peptidasa 1 , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...