Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
EMBO Mol Med ; 15(4): e16732, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36876343

RESUMEN

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Asunto(s)
Neoplasias , Radioinmunoterapia , Animales , Ratones , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Netrina-1/metabolismo
2.
J Med Chem ; 66(4): 2477-2497, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36780426

RESUMEN

Phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) are a new family of antimitotic prodrugs bioactivated in breast cancer cells expressing CYP1A1. In this study, we report that the 14C-labeled prototypical PAIB-SO [14C]CEU-818 and its antimitotic counterpart [14C]CEU-602 are distributed in whole mouse body and they show a short half-life in mice. To circumvent this limitation, we evaluated the effect of the homologation of the alkyl side chain of the imidazolidin-2-one moiety of PAIB-SOs. Our studies evidence that PAIB-SOs bearing an n-pentyl side chain exhibit antiproliferative activity in the nanomolar-to-low-micromolar range and a high selectivity toward CYP1A1-positive breast cancer cells. Moreover, the most potent n-pentyl PAIB-SOs were significantly more stable toward rodent liver microsomes. In addition, PAIB-SOs 10 and 14 show significant antitumor activity and low toxicity in chorioallantoic membrane (CAM) assay. Our study confirms that homologation is a suitable approach to improve the rodent hepatic stability of PAIB-SOs.


Asunto(s)
Antimitóticos , Neoplasias , Profármacos , Ratones , Animales , Antimitóticos/química , Profármacos/química , Citocromo P-450 CYP1A1 , Roedores , Microsomas Hepáticos , Bencenosulfonatos/química
3.
Cells ; 11(7)2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406812

RESUMEN

Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response of the heart. The structural basis of the progression from compensated hypertrophy to pathological hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflammatory program reflects a reparative or protective response to other primary injurious processes. Later on, regardless of the underlying etiology, heart failure is always associated with both local and systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In contrast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to the transition to heart failure. The current review examines the ambivalent role of inflammation (mainly TNFα-related) and cardiac macrophages (Mφ) in pathophysiologies from non-infarction origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing this knowledge could pave the way for innovative therapeutics in patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Inflamación/patología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
4.
Molecules ; 28(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36615280

RESUMEN

The development of 64Cu-based immuno-PET radiotracers requires the use of copper-specific bifunctional chelators (BFCs) that contain functional groups allowing both convenient bioconjugation and stable copper complexes to limit in vivo bioreduction, transmetallation and/or transchelation. The excellent in vivo kinetic inertness of the pentaazamacrocyclic [64Cu]Cu-15-5 complex prompted us to investigate its potential for the 64Cu-labelling of monoclonal antibodies (mAbs), compared with the well-known NODAGA and DOTA chelators. To this end, three NODAGA, DOTA and 15-5-derived BFCs, containing a pendant azadibenzocyclooctyne moiety, were synthesised and a robust methodology was determined to form covalent bonds between them and azide-functionalised trastuzumab, an anti-HER2 mAb, using strain-promoted azide-alkyne cycloaddition. Unlike the DOTA derivative, the NODAGA- and 15-5-mAb conjugates were radiolabelled with 64Cu, obtaining excellent radiochemical yields, under mild conditions. Although all the radioimmunoconjugates showed excellent stability in PBS or mouse serum, [64Cu]Cu-15-5- and [64Cu]Cu-NODAGA-trastuzumab presented higher resistance to transchelation when challenged by EDTA. Finally, the immunoreactive fraction of the radioimmunoconjugates (88-94%) was determined in HER-2 positive BT474 human breast cancer cells, confirming that the bioconjugation and radiolabelling processes implemented had no significant impact on antigen recognition.


Asunto(s)
Cobre , Inmunoconjugados , Humanos , Animales , Ratones , Quelantes/química , Inmunoconjugados/química , Azidas , Anticuerpos Monoclonales/química , Trastuzumab , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos
5.
J Mater Chem B ; 9(36): 7423-7434, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34373887

RESUMEN

Over the last decade, upconversion nanoparticles (UCNP) have been widely investigated in nanomedicine due to their high potential as imaging agents in the near-infrared (NIR) optical window of biological tissues. Here, we successfully develop active targeted UCNP as potential probes for dual NIR-NIR fluorescence and radioactive-guided surgery of prostate-specific membrane antigen (PSMA)(+) prostate cancers. We designed a one-pot thermolysis synthesis method to obtain oleic acid-coated spherical NaYF4:Yb,Tm@NaYF4 core/shell UCNP with narrow particle size distribution (30.0 ± 0.1 nm, as estimated by SAXS analysis) and efficient upconversion luminescence. Polyethylene glycol (PEG) ligands bearing different anchoring groups (phosphate, bis- and tetra-phosphonate-based) were synthesized and used to hydrophilize the UCNP. DLS studies led to the selection of a tetra-phosphonate PEG(2000) ligand affording water-dispersible UCNP with sustained colloidal stability in several aqueous media. PSMA-targeting ligands (i.e., glutamate-urea-lysine derivatives called KuEs) and fluorescent or radiolabelled prosthetic groups were grafted onto the UCNP surface by strain-promoted azide-alkyne cycloaddition (SPAAC). These UCNP, coated with 10 or 100% surface density of KuE ligands, did not induce cytotoxicity over 24 h incubation in LNCaP-Luc or PC3-Luc prostate cancer cell lines or in human fibroblasts for any of the concentrations evaluated. Competitive binding assays and flow cytometry demonstrated the excellent affinity of UCNP@KuE for PSMA-positive LNCaP-Luc cells compared with non-targeted UCNP@CO2H. Furthermore, the binding of UCNP@KuE to prostate tumour cells was positively correlated with the surface density of PSMA-targeting ligands and maintained after 125I-radiolabelling. Finally, a preliminary biodistribution study in LNCaP-Luc-bearing mice demonstrated the radiochemical stability of non-targeted [125I]UCNP paving the way for future in vivo assessments.


Asunto(s)
Antígenos de Superficie/metabolismo , Materiales Biocompatibles Revestidos/química , Glutamato Carboxipeptidasa II/metabolismo , Nanopartículas de Magnetita/química , Animales , Antígenos de Superficie/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/metabolismo , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/uso terapéutico , Reacción de Cicloadición , Fluoruros/química , Glutamato Carboxipeptidasa II/química , Humanos , Ligandos , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/toxicidad , Masculino , Ratones , Ácidos Oléicos/química , Imagen Óptica , Tamaño de la Partícula , Polietilenglicoles/química , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/cirugía , Tulio/química , Distribución Tisular , Iterbio/química , Itrio/química
6.
Cancers (Basel) ; 13(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804655

RESUMEN

PURPOSE: To assess the efficiency of targeted radionuclide therapy (TRT), alone or in combination with MEK inhibitors (MEKi), in melanomas harboring constitutive MAPK/ERK activation responsible for tumor radioresistance. METHODS: For TRT, we used a melanin radiotracer ([131I]ICF01012) currently in phase 1 clinical trial (NCT03784625). TRT alone or combined with MEKi was evaluated in three-dimensional melanoma spheroid models of human BRAFV600E SK-MEL-3, murine NRASQ61K 1007, and WT B16F10 melanomas. TRT in vivo biodistribution, dosimetry, efficiency, and molecular mechanisms were studied using the C57BL/6J-NRASQ61K 1007 syngeneic model. RESULTS: TRT cooperated with MEKi to increase apoptosis in both BRAF- and NRAS-mutant spheroids. NRASQ61K spheroids were highly radiosensitive towards [131I]ICF01012-TRT. In mice bearing NRASQ61K 1007 melanoma, [131I]ICF01012 induced a significant extended survival (92 vs. 44 days, p < 0.0001), associated with a 93-Gy tumor deposit, and reduced lymph-node metastases. Comparative transcriptomic analyses confirmed a decrease in mitosis, proliferation, and metastasis signatures in TRT-treated vs. control tumors and suggest that TRT acts through an increase in oxidation and inflammation and P53 activation. CONCLUSION: Our data suggest that [131I]ICF01012-TRT and MEKi combination could be of benefit for advanced pigmented BRAF-mutant melanoma care and that [131I]ICF01012 alone could constitute a new potential NRAS-mutant melanoma treatment.

7.
Cancer Immunol Immunother ; 69(10): 2075-2088, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32447411

RESUMEN

In line with the ongoing phase I trial (NCT03784625) dedicated to melanoma targeted radionuclide therapy (TRT), we explore the interplay between immune system and the melanin ligand [131I]ICF01012 alone or combined with immunotherapy (immune checkpoint inhibitors, ICI) in preclinical models. Here we demonstrate that [131I]ICF01012 induces immunogenic cell death, characterized by a significant increase in cell surface-exposed annexin A1 and calreticulin. Additionally, [131I]ICF01012 increases survival in immunocompetent mice, compared to immunocompromised (29 vs. 24 days, p = 0.0374). Flow cytometry and RT-qPCR analyses highlight that [131I]ICF01012 induces adaptive and innate immune cell recruitment in the tumor microenvironment. [131I]ICF01012 combination with ICIs (anti-CTLA-4, anti-PD-1, anti-PD-L1) has shown that tolerance is a main immune escape mechanism, whereas exhaustion is not present after TRT. Furthermore, [131I]ICF01012 and ICI combination has systematically resulted in a prolonged survival (p < 0.0001) compared to TRT alone. Specifically, [131I]ICF01012 + anti-CTLA-4 combination significantly increases survival compared to anti-CTLA-4 alone (41 vs. 26 days; p = 0.0011), without toxicity. This work represents the first global characterization of TRT-induced modifications of the antitumor immune response, demonstrating that tolerance is a main immune escape mechanism and that combining TRT and ICI is promising.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Radioisótopos de Yodo/uso terapéutico , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Tolerancia a Radiación/efectos de los fármacos , Animales , Terapia Combinada , Melanoma Experimental/patología , Ratones , Células Tumorales Cultivadas , Proteína Tumoral Controlada Traslacionalmente 1
9.
Transl Oncol ; 12(11): 1442-1452, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31421458

RESUMEN

Melanin-radiolabeled molecules for targeted radionuclide therapy (TRT) provide a promising approach for the treatment of pigmented melanoma. Among these radiolabeled molecules, the iodinated melanin-specific binding molecule ([131I]ICF01012) has shown a significant antitumor effect on metastatic melanoma preclinical models. We report herein that [131I]ICF01012 decreases the epithelial-mesenshymal transition-like (EMT-like) markers in both in vivo and in vitro three-dimensional (3D) melanoma spheroid models. [131I]ICF01012 spheroids irradiation resulted in reduced clonogenic capacity of all pigmented spheroids accompanied by increased protein expression levels of phosphorylated H2A.X, p53 and its downstream target p21. In addition, [131I]ICF01012 treatment leads to a significant increase of cell pigmentation as demonstrated in SK-MEL3 human xenograft model. We also showed that [131I]ICF01012 decreases the size and the number of melanoma lung colonies in the syngeneic murine B16BL6 in vivo model assessing its potentiality to kill circulating tumor cells. Taken together, these results indicate that [131I]ICF01012 reduces metastatic capacity of melanoma cells presumably through EMT-like reduction and cell differentiation induction.

10.
Artículo en Inglés | MEDLINE | ID: mdl-30897406

RESUMEN

Determination of eumelanin and pheomelanin in melanomas that exhibit different pigmentation was carried using a solid-phase extraction (SPE) preparation method based on weak anion exchange chemistry. This extraction significantly enhanced the chromatographic profile obtained by reverse phase high performance liquid chromatography-diode array detection (RP-HPLC-DAD). The SPE method was developed using aqueous standards of melanin markers: thiazole-2,4,5-tricarboxylic acid (TTCA), thiazole-4,5-dicarboxylic acid (TDCA), pyrrole-2,3-dicarboxylic acid (PDCA) and pyrrole-2,3,5-tricarboxylic acid (PTCA) and non-pigmented cell lines spiked with those markers. An excellent average recovery, above 90%, was obtained for the four markers with a relative standard deviation below 7%. We have also optimized the stationary phase and the mobile phase (phosphate concentration and pH) to improve sensitivity and to reduce the analysis time. Elution of the four markers is achieved in 5 min and total analysis of biological samples is completed in 15 min. The quantification limits for TDCA, TTCA, PDCA and PTCA are 60, 50, 47 and 48 ng/mL respectively. Furthermore, DAD detection improves the marker identification in complex matrices through the analysis of UV spectra. We have successfully applied this method to melanoma tumors and cells. Murine B16BL6 tumor are highly pigmented with mostly eumelanin (98.1% of eumelanin) while human SK-MEL-3 tumor contain about 30% pheomelanin. B16BL6 and B16F10 are eumelanic cells lines and NHEM melanocytes contain about 24% of pheomelanin.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Melaninas/análisis , Melanoma/química , Extracción en Fase Sólida/métodos , Animales , Línea Celular Tumoral , Humanos , Límite de Detección , Modelos Lineales , Masculino , Melaninas/química , Melaninas/aislamiento & purificación , Ratones , Reproducibilidad de los Resultados
11.
Epigenomics ; 10(11): 1415-1430, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30324811

RESUMEN

AIM: The acetyltransferase TIP60 is reported to be downregulated in several cancers, in particular breast cancer, but the molecular mechanisms resulting from its alteration are still unclear. MATERIALS & METHODS: In breast tumors, H3K4ac enrichment and its link with TIP60 were evaluated by chromatin immunoprecipitation-qPCR and re-chromatin immunoprecipitation techniques. To assess the biological roles of TIP60 in breast cancer, two cell lines of breast cancer, MDA-MB-231 (ER-) and MCF-7 (ER+) were transfected with shRNA specifically targeting TIP60 and injected to athymic Balb-c mice. RESULTS: We identified a potential target of TIP60, H3K4. We show that an underexpression of TIP60 could contribute to a reduction of H3K4 acetylation in breast cancer. An increase in tumor development was noted in sh-TIP60 MDA-MB-231 xenografts and a slowdown of tumor growth in sh-TIP60 MCF-7 xenografts. CONCLUSION: This is evidence that the underexpression of TIP60 observed in breast cancer can promote the tumorigenesis of ER-negative tumors.


Asunto(s)
Neoplasias de la Mama/genética , Código de Histonas , Histonas/metabolismo , Lisina Acetiltransferasa 5/metabolismo , Acetilación , Animales , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Lisina Acetiltransferasa 5/genética , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
12.
Cancer Chemother Pharmacol ; 80(3): 517-526, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28707014

RESUMEN

PURPOSE: This study was conducted during the development of innovative treatment targeting the microenvironment of chondrosarcoma. In this context, MMP inhibitors were conjugated with a quaternary ammonium (QA) function as a targeting ligand to proteoglycans of chondrosarcoma extracellular matrix. Here we report the proof of concept of this strategy applied to the MMP13 inhibitor, doxycycline (Dox). METHODS: A quaternary ammonium derivative of the MMP13 inhibitor doxycycline (QA-Dox) was synthesized, and its anticancer activity was evaluated in the Swarm rat chondrosarcoma (SRC) model compared with the parent drug doxycycline, in vitro and in vivo. In vivo, dox and QA-Dox efficiency was assessed at equimolar doses according to a q4dx4 schedule by monitoring tumour volume by MRI and PG-targeted scintigraphy. Molecular mechanism (MMP13 expression, proteoglycan level) and histology studies were performed on tumours. RESULTS: The link of QA targeting function to Dox maintained the MMP13 inhibitory activity in vitro. Interestingly, the bacteriostatic activity was lost. SRC cells incubated with both drugs were blocked in S and G2 M phases. Tumour growth inhibition (confirmed by histology) was observed for both Dox and QA-Dox. Undesirable blood effects (leukocyte decrease) were reduced when Dox was targeted to tumour tissue using the QA function. CONCLUSIONS: In the SRC model, the MMP13 inhibitor Dox and its QA derivative are promising as adjuvant therapies for chondrosarcoma management.


Asunto(s)
Compuestos de Amonio/uso terapéutico , Condrosarcoma/tratamiento farmacológico , Doxiciclina/uso terapéutico , Compuestos de Amonio/administración & dosificación , Compuestos de Amonio/farmacología , Condrosarcoma/patología , Doxiciclina/administración & dosificación , Doxiciclina/farmacología , Humanos
13.
Exp Gerontol ; 95: 71-76, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28479388

RESUMEN

High intensity training (HIT) has been shown to improve maximal aerobic capacity and muscle protein synthesis but has not yet been investigated in senescent rats. We hypothesized that the change of speed (acceleration) during each bout of HIT acts as a stimulus responsible for the adaptations of the organism to exercise. Twenty two month-old (mo) rats (n=13) were subjected to a short acceleration protocol (20-30min) of exercise, comprising 3 independent bouts of acceleration and compared to an age-matched sedentary group (n=14). The protocol was repeated twice a week for two months. Following the protocol, performance, cardiac function, muscle mechanics, and the cellular and molecular pathways that are implicated in exercise adaptations were investigated. This new training, comprising only 16 sessions, improved maximal oxygen uptake (⩒O2peak; +6.6%, p<0.05), running distance (+95.2%; p<0.001), speed (+29.7%; p<0.01) and muscle function of 24mo rats in only 8weeks. This new training protocol induced cardiac hypertrophy and improved fractional shortening (47.3% vs. 41.1% in the control group, p<0.01) and ejection fraction. Moreover, it also improved the mechanics of skeletal muscle by increasing developed force (+31% vs. the control group, p<0.05) and maximal mechanical efficiency, activated the IGF1/mTOR/Akt pathway, and reduced the Smad2/3 pathway. Our results clearly show that the change in speed is a stimulus to control cardiac and skeletal muscle mass. This acceleration-based training is not time-consuming and may be adaptable for athletes, the elderly or chronic disease patients in order to improve strength, oxidative capacity, and quality of life.


Asunto(s)
Senescencia Celular , Entrenamiento de Intervalos de Alta Intensidad/métodos , Contracción Muscular , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/métodos , Función Ventricular Izquierda , Aceleración , Adaptación Fisiológica , Factores de Edad , Animales , Fenómenos Biomecánicos , Cardiomegalia Inducida por el Ejercicio , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Contracción Miocárdica , Consumo de Oxígeno , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Volumen Sistólico , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
14.
Oncotarget ; 8(13): 22034-22047, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28423546

RESUMEN

Tetraspanin 8 (TSPAN8) overexpression is correlated with poor prognosis in human colorectal cancer (CRC). A murine mAb Ts29.2 specific for human TSPAN8 provided significant efficiency for immunotherapy in CRC pre-clinical models. We therefore evaluate the feasability of targeting TSPAN8 in CRC with radiolabeled Ts29.2. Staining of tissue micro-arrays with Ts29.2 revealed that TSPAN8 espression was restricted to a few human healthy tissues. DOTA-Ts29.2 was radiolabeled with 111In or 177Lu with radiochemical purities >95%, specific activity ranging from 300 to 600 MBq/mg, and radioimmunoreactive fractions >80%. The biodistribution of [111In]DOTA-Ts29.2 in nude mice bearing HT29 or SW480 CRC xenografts showed a high specificity of tumor localization with high tumor/blood ratios (HT29: 4.3; SW480-TSPAN8: 3.9 at 72h and 120h post injection respectively). Tumor-specific absorbed dose calculations for [177Lu]DOTA-Ts29.2 was 1.89 Gy/MBq, establishing the feasibility of using radioimmunotherapy of CRC with this radiolabeled antibody. A significant inhibition of tumor growth in HT29 tumor-bearing mice treated with [177Lu]DOTA-Ts29.2 was observed compared to control groups. Ex vivo experiments revealed specific DNA double strand breaks associated with cell apoptosis in [177Lu]DOTA-Ts29.2 treated tumors compared to controls. Overall, we provide a proof-of-concept for the use of [111In/177Lu]DOTA-Ts29.2 that specifically target in vivo aggressive TSPAN8-positive cells in CRC.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Radioisótopos de Indio/uso terapéutico , Lutecio/uso terapéutico , Radioinmunoterapia , Tetraspaninas/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacocinética , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Inmunoconjugados/inmunología , Radioisótopos de Indio/farmacocinética , Lutecio/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Appl Physiol (1985) ; 122(3): 430-434, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035015

RESUMEN

The purpose of this study was to examine the physiological characteristics of an elite centenarian cyclist who, at 101 yr old, established the 1-h cycling record for individuals ≥100 yr old (24.25 km) and to determine the physiological factors associated with his performance improvement 2 yr later at 103 yr old (26.92 km; +11%). Before each record, he performed an incremental test on a cycling ergometer. For 2 yr, he trained 5,000 km/yr with a polarized training that involved cycling 80% of mileage at "light" rate of perceived exertion (RPE) ≤12 and 20% at "hard" RPE ≥15 at a cadence between 50 and 70 rpm. His body weight and lean body mass did not change, while his maximal oxygen consumption (V̇o2max) increased (31-35 ml·kg-1·min-1; +13%). Peak power output increased from 90 to 125 W (+39%), mainly because of increasing the maximal pedaling frequency (69-90 rpm; +30%). Maximal heart rate did not change (134-137 beats/min) in contrast to the maximal ventilation (57-70 l/min, +23%), increasing with both the respiratory frequency (38-41 cycles/min; +8%) and the tidal volume (1.5-1.7 liters; +13%). Respiratory exchange ratio increased (1.03-1.14) to the same extent as tolerance to V̇co2 In conclusion, it is possible to increase performance and V̇o2max with polarized training focusing on a high pedaling cadence even after turning 100 yr old.NEW & NOTEWORTHY This study shows, for the first time, that maximal oxygen consumption (+13%) and performance (+11%) can still be increased between 101 and 103 yr old with 2 yr of training and that a centenarian is able, at 103 yr old, to cover 26.9 km/h in 1 h.


Asunto(s)
Rendimiento Atlético/psicología , Ciclismo/fisiología , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Esfuerzo Físico/fisiología , Análisis y Desempeño de Tareas , Anciano de 80 o más Años , Humanos , Masculino
16.
Neoplasia ; 19(1): 17-27, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987437

RESUMEN

PURPOSE: This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound. METHODS: Studies were conducted in the murine syngeneic B16BL6 model and in the A375 and SK-MEL-3 human xenografts. ICF15002 was radiolabeled with fluorine-18 for positron emission tomography (PET) imaging and biodistribution, with iodine-125 for metabolism study, and iodine-131 for targeted radionuclide therapy (TRT). TRT efficacy was assessed by tumor volume measurement, with mechanistics and dosimetry parameters being determined in the B16BL6 model. Intracellular localization of ICF15002 was characterized by secondary ion mass spectrometry (SIMS). RESULTS: PET imaging with [18F]ICF15002 evidenced tumoral uptake of 14.33±2.11%ID/g and 4.87±0.93%ID/g in pigmented B16BL6 and SK-MEL-3 models, respectively, at 1 hour post inoculation. No accumulation was observed in the unpigmented A375 melanoma. SIMS demonstrated colocalization of ICF15002 signal with melanin polymers in melanosomes of the B16BL6 tumors. TRT with two doses of 20 MBq [131I]ICF15002 delivered an absorbed dose of 102.3 Gy to B16BL6 tumors, leading to a significant tumor growth inhibition [doubling time (DT) of 2.9±0.5 days in treated vs 1.8±0.3 in controls] and a prolonged median survival (27 days vs 21 in controls). P53S15 phosphorylation and P21 induction were associated with a G2/M blockage, suggesting mitotic catastrophe. In the human SK-MEL-3 model, three doses of 25 MBq led also to a DT increase (26.5±7.8 days vs 11.0±3.8 in controls) and improved median survival (111 days vs 74 in controls). CONCLUSION: Results demonstrate that ICF15002 fulfills suitable properties for bimodal imaging/TRT management of patients with pigmented melanoma.


Asunto(s)
Radioisótopos de Yodo , Melanoma/diagnóstico por imagen , Melanoma/patología , Imagen Multimodal , Radiofármacos , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Yodo/química , Radioisótopos de Yodo/metabolismo , Masculino , Melanoma/mortalidad , Melanoma/terapia , Melanoma Experimental , Ratones , Metástasis de la Neoplasia , Tomografía de Emisión de Positrones , Radioquímica , Radiofármacos/química , Radiofármacos/metabolismo , Distribución Tisular , Proteína Tumoral Controlada Traslacionalmente 1 , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Oncotarget ; 7(11): 12927-36, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26887045

RESUMEN

Radiolabelled melanin ligands offer an interesting strategy for the treatment of disseminated pigmented melanoma. One of these molecules, ICF01012 labelled with iodine 131, induced a significant slowing of melanoma growth. Here, we have explored the combination of [131I]ICF01012 with coDbait, a DNA repair inhibitor, to overcome melanoma radioresistance and increase targeted radionuclide therapy (TRT) efficacy. In human SK-Mel 3 melanoma xenograft, the addition of coDbait had a synergistic effect on tumor growth and median survival. The anti-tumor effect was additive in murine syngeneic B16Bl6 model whereas coDbait combination with [131I]ICF01012 did not increase TRT side effects in secondary pigmented tissues (e.g. hair follicles, eyes). Our results confirm that DNA lesions induced by TRT were not enhanced with coDbait association but, the presence of micronuclei and cell cycle blockade in tumor shows that coDbait acts by interrupting or delaying DNA repair. In this study, we demonstrate for the first time, the usefulness of DNA repair traps in the context of targeted radionuclide therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Reparación del ADN/efectos de los fármacos , ADN/farmacología , Melanoma Experimental/tratamiento farmacológico , Animales , Sinergismo Farmacológico , Femenino , Humanos , Radioisótopos de Yodo/farmacología , Masculino , Melanoma/patología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Quinoxalinas/farmacología , Proteína Tumoral Controlada Traslacionalmente 1 , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Appl Radiat Isot ; 101: 1-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25813000

RESUMEN

The cartilage-targeting strategy is based on the strong affinity of quaternary ammonium (QA) functions for cartilage proteoglycans. We use a bifunctional agent containing QA moiety and a polyazamacrocycle structure able to complex technetium-99m. (99m)Tc-NTP 15-5 was selected for its high stability and its high affinity for proteoglycans in vivo. Labeling conditions of NTP 15-5 were optimized, and a lyophilized kit was developed for radiolabeling of (99m)Tc-NTP 15-5 (radiochemical yields 94.6±1.8%). (99m)Tc-NTP 15-5 was stable and resulted in favorable biological evaluations.


Asunto(s)
Cartílago/diagnóstico por imagen , Cartílago/metabolismo , Compuestos Heterocíclicos con 1 Anillo/aislamiento & purificación , Compuestos de Organotecnecio/aislamiento & purificación , Proteoglicanos/metabolismo , Compuestos de Amonio Cuaternario/aislamiento & purificación , Radiofármacos/aislamiento & purificación , Tecnecio/aislamiento & purificación , Animales , Enfermedades de los Cartílagos/diagnóstico por imagen , Enfermedades de los Cartílagos/metabolismo , Química Farmacéutica , Liofilización/métodos , Compuestos Heterocíclicos con 1 Anillo/sangre , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Indicadores y Reactivos , Compuestos de Organotecnecio/sangre , Compuestos de Organotecnecio/farmacocinética , Compuestos de Amonio Cuaternario/sangre , Compuestos de Amonio Cuaternario/farmacocinética , Cintigrafía , Radiofármacos/sangre , Radiofármacos/farmacocinética , Ratas , Tecnecio/sangre , Tecnecio/farmacocinética
19.
Eur J Med Chem ; 92: 818-38, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25637883

RESUMEN

Melanin pigment represents an attractive target to address specific treatment to melanoma cells, such as cytotoxic radionuclides. However, less than half of the patients have pigmented metastases. Hence, specific marker is required to stratify this patient population before proceeding with melanin-targeted radionuclide therapy. In such a context, we developed fluorinated analogues of a previously studied melanin-targeting ligand, N-(2-diethylaminoethyl)-6-iodoquinoxaline-2-carboxamide (ICF01012). These latter can be labeled either with (18)F or (131)I/(125)I for positron emission tomography imaging (melanin-positive patient selection) and targeted radionuclide therapy purposes. Here we describe the syntheses, radiosyntheses and preclinical evaluations on melanoma-bearing mice model of several iodo- and fluoro(hetero)aromatic derivatives of the ICF01012 scaffold. After preliminary planar gamma scintigraphic and positron emission tomography imaging evaluations, [(125)I]- and [(18)F]-N-[2-(diethylamino)ethyl]-4-fluoro-3-iodobenzamides ([(125)I]4, [(18)F]4) were found to be chemically and biologically stable with quite similar tumor uptakes at 1 h p.i. (9.7 ± 2.6% ID/g and 6.8 ± 1.9% ID/g, respectively).


Asunto(s)
Melanoma Experimental/diagnóstico , Melanoma Experimental/tratamiento farmacológico , Imagen Molecular , Tomografía de Emisión de Positrones , Trazadores Radiactivos , Animales , Modelos Animales de Enfermedad , Radioisótopos de Flúor/química , Humanos , Radioisótopos de Yodo/química , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular
20.
ACS Med Chem Lett ; 6(2): 168-72, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25699145

RESUMEN

The new readily available prosthetic group, tetrafluorophenyl 4-fluoro-3-iodobenzoate (TFIB), designed for both molecular imaging and targeted radionuclide therapy purposes was radiolabeled either with fluorine or iodine radionuclides with excellent radiochemical yields and purities. These radiolabeled tags were conjugated to N,N-diethylethylenediamine to give melanin-targeting radiotracers [ (125) I]9 and [ (18) F]9, which were successfully evaluated by PET and gamma scintigraphic imaging in B16F0 pigmented melanoma-bearing C57BL/6J mice. Then, radiolabeled [ (125) I]/[ (18) F]TFIB was used to tag tumor-targeting peptides (i.e., PEG3[c(RGDyK)]2 and NDP-MSH targeting αvß3 integrin and MC1R receptors, respectively) in mild conditions and with good radiochemical yields (47-83% d.c.) and purities (>99%). The resulting radiolabeled peptides were assessed both in vitro and by PET imaging in animal models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...