Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Vet Microbiol ; 288: 109914, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113575

RESUMEN

Escherichia coli is the most common cause of recurrent urinary tract infection (UTI) in dogs. UTI recurrence comprises of persistent, unresolved E. coli infection or reinfection with a different strain of E. coli. Differentiating between these processes is clinically important but is often impossible with routine diagnostics. We tested the hypothesis that most recurrent canine E. coli bacteriuria is due to recurrence of the same E. coli strain involved in the initial infection. Molecular typing was performed on 98 urinary E. coli isolated from dogs with recurrent bacteriuria from five veterinary diagnostic laboratories in the United States. Of the 42 dogs in this study with multiple E. coli bacteriuria observations, a single strain of E. coli caused recurrent bacteriuria in 26 (62 %) dogs, in some cases on multiple occasions for prolonged periods of time (up to eight months). A single E. coli strain was detected during both subclinical bacteriuria and clinically-apparent UTI in three dogs. Isolates with the P-fimbrial adhesin genes papA and papC were associated with recurrence by the same strain of E. coli. Multiple isolations of a single strain of E. coli associated with recurrent bacteriuria suggests that E. coli may be maintained within the urinary tract of some dogs for prolonged periods of time. In some patients, the same strain can cause both clinical UTI and subclinical bacteriuria. This indicates that in dogs, the urinary bladder may serve as a subclinical, long-term reservoir of E. coli that may cause clinical UTI in the future.


Asunto(s)
Bacteriuria , Enfermedades de los Perros , Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Perros , Animales , Bacteriuria/veterinaria , Escherichia coli/genética , Infecciones Urinarias/veterinaria , Infecciones por Escherichia coli/veterinaria , Vejiga Urinaria , Enfermedades de los Perros/diagnóstico
2.
Ecol Evol ; 11(21): 14366-14382, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765112

RESUMEN

A respiratory disease epizootic at the National Bison Range (NBR) in Montana in 2016-2017 caused an 85% decline in the bighorn sheep population, documented by observations of its unmarked but individually identifiable members, the subjects of an ongoing long-term study. The index case was likely one of a small group of young bighorn sheep on a short-term exploratory foray in early summer of 2016. Disease subsequently spread through the population, with peak mortality in September and October and continuing signs of respiratory disease and sporadic mortality of all age classes through early July 2017. Body condition scores and clinical signs suggested that the disease affected ewe groups before rams, although by the end of the epizootic, ram mortality (90% of 71) exceeded ewe mortality (79% of 84). Microbiological sampling 10 years to 3 months prior to the epizootic had documented no evidence of infection or exposure to Mycoplasma ovipneumoniae at NBR, but during the epizootic, a single genetic strain of M. ovipneumoniae was detected in affected animals. Retrospective screening of domestic sheep flocks near the NBR identified the same genetic strain in one flock, presumptively the source of the epizootic infection. Evidence of fatal lamb pneumonia was observed during the first two lambing seasons following the epizootic but was absent during the third season following the death of the last identified M. ovipneumoniae carrier ewe. Monitoring of life-history traits prior to the epizootic provided no evidence that environmentally and/or demographically induced nutritional or other stress contributed to the epizootic. Furthermore, the epizootic occurred despite proactive management actions undertaken to reduce risk of disease and increase resilience in this population. This closely observed bighorn sheep epizootic uniquely illustrates the natural history of the disease including the (presumptive) source of spillover, course, severity, and eventual pathogen clearance.

3.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158889

RESUMEN

Subcutaneous vaccination of cattle for enterohemorrhagic Escherichia coli O157:H7 reduces the magnitude and duration of fecal shedding, but the often-required, repeated cattle restraint can increase costs, deterring adoption by producers. In contrast, live oral vaccines may be repeatedly administered in feed, without animal restraint. We investigated whether oral immunization with live stx-negative LEE+E. coli O157:H7 reduced rectoanal junction (RAJ) colonization by wild-type (WT) E. coli O157:H7 strains after challenge. Two groups of cattle were orally dosed twice weekly for 6 weeks with 3 × 109 CFU of a pool of three stx-negative LEE+E. coli O157:H7 strains (vaccine group) or three stx-negative LEE- non-O157:H7 E. coli strains (control group). Three weeks following the final oral dose, animals in both groups were orally challenged with a cocktail of four stx+ LEE+E. coli O157:H7 WT strains. Subsequently, WT strains at the RAJ were enumerated weekly for 4 weeks. Serum antibodies against type III secretion protein (TTSP), the translocated intimin receptor (Tir), and EspA were determined by enzyme-linked immunosorbent assay (ELISA) at day 0 (preimmunization), day 61 (postimmunization, prechallenge), and day 89 (postchallenge). Vaccine group cattle had lower numbers of WT strains at the RAJ than control group cattle on postchallenge days 3 and 7 (P ≤ 0.05). Also, vaccine group cattle shed WT strains for a shorter duration than control group cattle. All cattle seroconverted to TTSP, Tir, and EspA, either following immunization (vaccine group) or following challenge (control group). Increased antibody titers against Tir and TTSP postimmunization were associated with decreased numbers of WT E. coli O157:H7 organisms at the RAJ.IMPORTANCE The bacterium E. coli O157:H7 causes foodborne disease in humans that can lead to bloody diarrhea, kidney failure, vascular damage, and death. Healthy cattle are the main source of this human pathogen. Reducing E. coli O157:H7 in cattle will reduce human disease. Using a randomized comparison, a bovine vaccine to reduce carriage of the human pathogen was tested. A detoxified E. coli O157:H7 strain, missing genes that cause disease, was fed to cattle as an oral vaccine to reduce carriage of pathogenic E. coli O157:H7. After vaccination, the cattle were challenged with disease-causing E. coli O157:H7. The vaccinated cattle had decreased E. coli O157:H7 during the first 7 days postchallenge and shed the bacteria for a shorter duration than the nonvaccinated control cattle. The results support optimization of the approach to cattle vaccination that would reduce human disease.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/inmunología , Vacunas contra Escherichia coli , Administración Oral , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Bovinos , Proteínas de Escherichia coli/inmunología , Masculino , Receptores de Superficie Celular/inmunología , Toxina Shiga , Sistemas de Secreción Tipo III/inmunología , Vacunación/veterinaria
4.
Sci Rep ; 10(1): 7082, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321990

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Ecol Evol ; 10(7): 3491-3502, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32274004

RESUMEN

Chronic pathogen carriage is one mechanism that allows diseases to persist in populations. We hypothesized that persistent or recurrent pneumonia in bighorn sheep (Ovis canadensis) populations may be caused by chronic carriers of Mycoplasma ovipneumoniae (Mo). Our experimental approach allowed us to address a conservation need while investigating the role of chronic carriage in disease persistence.We tested our hypothesis in two bighorn sheep populations in South Dakota, USA. We identified and removed Mo chronic carriers from the Custer State Park (treatment) population. Simultaneously, we identified carriers but did not remove them from the Rapid City population (control). We predicted removal would result in decreased pneumonia, mortality, and Mo prevalence. Both population ranges had similar habitat and predator communities but were sufficiently isolated to preclude intermixing.We classified chronic carriers as adults that consistently tested positive for Mo carriage over a 20-month sampling period (n = 2 in the treatment population; n = 2 in control population).We failed to detect Mo or pneumonia in the treatment population after chronic carrier removal, while both remained in the control. Mortality hazard for lambs was reduced by 72% in the treatment population relative to the control (CI = 36%, 91%). There was also a 41% reduction in adult mortality hazard attributable to the treatment, although this was not statistically significant (CI = 82% reduction, 34% increase). Synthesis and Applications: These results support the hypothesis that Mo is a primary causative agent of persistent or recurrent respiratory disease in bighorn sheep populations and can be maintained by a few chronic carriers. Our findings provide direction for future research and management actions aimed at controlling pneumonia in wild sheep and may apply to other diseases.

6.
Sci Rep ; 9(1): 15318, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653889

RESUMEN

Spillover diseases have significant consequences for human and animal health, as well as wildlife conservation. We examined spillover and transmission of the pneumonia-associated bacterium Mycoplasma ovipneumoniae in domestic sheep, domestic goats, bighorn sheep, and mountain goats across the western United States using 594 isolates, collected from 1984 to 2017. Our results indicate high genetic diversity of M. ovipneumoniae strains within domestic sheep, whereas only one or a few strains tend to circulate in most populations of bighorn sheep or mountain goats. These data suggest domestic sheep are a reservoir, while the few spillovers to bighorn sheep and mountain goats can persist for extended periods. Domestic goat strains form a distinct clade from those in domestic sheep, and strains from both clades are found in bighorn sheep. The genetic structure of domestic sheep strains could not be explained by geography, whereas some strains are spatially clustered and shared among proximate bighorn sheep populations, supporting pathogen establishment and spread following spillover. These data suggest that the ability to predict M. ovipneumoniae spillover into wildlife populations may remain a challenge given the high strain diversity in domestic sheep and need for more comprehensive pathogen surveillance.


Asunto(s)
Animales Domésticos/microbiología , Animales Salvajes/microbiología , Cabras/microbiología , Mycoplasma ovipneumoniae/genética , Ovinos/microbiología , Animales , Biodiversidad , Geografía , Interacciones Huésped-Patógeno/genética , Mycoplasma ovipneumoniae/aislamiento & purificación , Filogenia , Recombinación Genética/genética , Estados Unidos
7.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20180343, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31401952

RESUMEN

Managing pathogen spillover at the wildlife-livestock interface is a key step towards improving global animal health, food security and wildlife conservation. However, predicting the effectiveness of management actions across host-pathogen systems with different life histories is an on-going challenge since data on intervention effectiveness are expensive to collect and results are system-specific. We developed a simulation model to explore how the efficacies of different management strategies vary according to host movement patterns and epidemic growth rates. The model suggested that fast-growing, fast-moving epidemics like avian influenza were best-managed with actions like biosecurity or containment, which limited and localized overall spillover risk. For fast-growing, slower-moving diseases like foot-and-mouth disease, depopulation or prophylactic vaccination were competitive management options. Many actions performed competitively when epidemics grew slowly and host movements were limited, and how management efficacy related to epidemic growth rate or host movement propensity depended on what objective was used to evaluate management performance. This framework offers one means of classifying and prioritizing responses to novel pathogen spillover threats, and evaluating current management actions for pathogens emerging at the wildlife-livestock interface. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Asunto(s)
Animales Salvajes , Enfermedades Transmisibles Emergentes/veterinaria , Ganado , Zoonosis/prevención & control , Animales , Enfermedades Transmisibles Emergentes/prevención & control
9.
Water Res ; 161: 335-340, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31212239

RESUMEN

Our objective was to determine whether ß-lactamase genes are carried within bacteriophage capsids, as a first step towards exploring the possible role of bacteriophages as vehicles for dispersal of antimicrobial resistance genes through an agricultural region of Washington State. Water samples (n = 178) from municipal wastewater treatment plants, river and irrigation canals were collected over a period of eight months. The occurrence of four ß-lactam resistance gene groups (blaTEM, blaCTX-M, blaPSE and blaCMY-2) and three carbapenem resistance genes (blaKPC, blaOXA-48-like, and blaNDM) in bacterial and phage fractions of water samples was evaluated by PCR. All of the seven targeted resistance genes were detected both in wastewater and river water samples. Relatively high proportions of samples (7.3%-64.9%) positive for resistance genes were found in bacteriophage fractions of water samples compared to the bacterial fractions (5.4%-36.8%). blaOXA-48-like (57.3%) and blaTEM (64.0%) were the most prevalent antimicrobial resistance genes detected at all the sampling points. Resistance genes are commonly present in treated wastewater flowing through municipal and agricultural environments, indicating a plausible role for this water in the dissemination of antimicrobial resistance traits, including blaCTX-M.


Asunto(s)
Bacteriófagos , Aguas Residuales , Antibacterianos , ADN Bacteriano , Genes Bacterianos , Ríos , Washingtón , Resistencia betalactámica , beta-Lactamasas
10.
Prev Vet Med ; 168: 30-38, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31097121

RESUMEN

Association of Mycoplasma ovipneumoniae with pneumonia in domestic small ruminants has been described in Europe, Asia, and New Zealand but has received less attention in the United States. In 2011, the US Department of Agriculture's National Animal Health Monitoring System detected M. ovipneumoniae shedding in 88% of 453 domestic sheep operations tested in 22 states that accounted for 85.5% of US ewe inventory in 2001. We evaluated factors associated with M. ovipneumoniae infection presence and prevalence, and we compared health, lamb production, and ewe losses in infected and uninfected operations. M. ovipneumoniae detection was more common in larger operations than in smaller operations. Both likelihood of detection (at the operation level) and within-operation prevalence were higher in operations with more open management practices than in operations with more closed management practices. M. ovipneumoniae-positive operations showed significantly lower lambing rates and lower rates of lamb survival to weaning after accounting for differences in operation size and management practice. While its effect on any single rate was not particularly large, in aggregate we estimated that M. ovipneumoniae presence was associated with an approximately 4.3% reduction in annual lamb production.


Asunto(s)
Mycoplasma ovipneumoniae , Neumonía por Mycoplasma/veterinaria , Enfermedades de las Ovejas/microbiología , Agricultura , Animales , Femenino , Neumonía por Mycoplasma/epidemiología , Prevalencia , Factores de Riesgo , Ovinos , Enfermedades de las Ovejas/economía , Enfermedades de las Ovejas/epidemiología , Estados Unidos/epidemiología
11.
PLoS One ; 14(2): e0207420, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30730893

RESUMEN

Mycoplasma ovipneumoniae is a globally distributed pathogen that has been associated with pneumonia in both domestic and wild Caprinae. It is closely related to M. hyopneumoniae, a respiratory pathogen of swine that is associated with decreased growth rates of pigs as well as clinical respiratory disease. In order to assess the effects of M. ovipneumoniae on lamb performance, we generated a cohort of lambs free of M. ovipneumoniae by segregation of test negative ewes after lambing, then compared the growth and carcass quality traits of M. ovipneumoniae-free and -colonized lambs from weaning to harvest. Some signs of respiratory disease were observed during the feeding trial in both lamb groups, but the M. ovipneumoniae-exposed group included more affected lambs and higher average disease scores. At harvest, lungs of lambs in both groups showed few grossly visible lesions, although the M. ovipneumoniae-exposed group did exhibit increased microscopic lung lesions (P<0.05). In addition, M. ovipneumoniae exposed lambs produced lower average daily gains (P<0.05), and lower yield grade carcasses (P<0.05) compared to those of non-exposed lambs. The results demonstrated the feasibility of test and segregation for elimination of M. ovipneumoniae from groups of sheep and suggested that this pathogen may impair lamb growth and productivity even in the absence of overt respiratory disease.


Asunto(s)
Mycoplasma ovipneumoniae/patogenicidad , Neumonía por Mycoplasma/microbiología , Neumonía por Mycoplasma/fisiopatología , Oveja Doméstica/crecimiento & desarrollo , Oveja Doméstica/microbiología , Animales , Femenino , Pulmón/microbiología , Pulmón/fisiología , Masculino , Proyectos Piloto , Ovinos , Enfermedades de las Ovejas/microbiología , Enfermedades de las Ovejas/fisiopatología , Oveja Doméstica/fisiología , Porcinos/crecimiento & desarrollo , Porcinos/microbiología
12.
J Wildl Dis ; 55(1): 206-212, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30161017

RESUMEN

We documented bronchopneumonia in seven mountain goat ( Oreamnos americanus) kid mortalities between 2011 and 2015 following a pneumonia epizootic in bighorn sheep ( Ovis canadensis) and sympatric mountain goats in the adjacent East Humboldt Range and Ruby Mountains in Elko County, Nevada, US. Gross and histologic lesions resembled those described in bighorn lambs following all-age epizootics, and Mycoplasma ovipneumoniae was detected with real-time PCR in the lower and upper respiratory tracts of all kids. Mannheimia haemolytica, with one isolate being leukotoxigenic, was cultured from the upper respiratory tract of five kids, and in one kid, a leukotoxigenic strain of Mannheimia glucosida was isolated from both upper and lower respiratory tracts. During this same period, 75 mountain goats within the two populations were marked and sampled for respiratory pathogens, and M. ovipneumoniae, leukotoxigenic Bibersteinia trehalosi, and Mannheimia haemolytica were identified. The M. ovipneumoniae recovered from the kid mortalities shared the same DNA sequence-based strain type detected in the adult goats and sympatric bighorn sheep during and after the 2009-10 pneumonia outbreak. Clinical signs in affected kids, as well as decreased annual kid recruitment, also resembled reports in bighorn lambs from some herds following all-age pneumonia-associated die-offs. Mycoplasma ovipneumoniae, Pasteurellaceae spp., and other respiratory bacterial pathogens should be considered as a cause of pneumonia with potential population-limiting effects in mountain goats.


Asunto(s)
Mycoplasma ovipneumoniae/aislamiento & purificación , Neumonía por Mycoplasma/veterinaria , Rumiantes , Animales , Nevada/epidemiología , Neumonía por Mycoplasma/epidemiología , Neumonía por Mycoplasma/microbiología , Neumonía por Mycoplasma/mortalidad
13.
Vet Pathol ; 56(1): 118-132, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30244661

RESUMEN

A novel foot disease in free-ranging elk ( Cervus elaphus) in southwestern Washington State emerged in 2008 and spread throughout the region. Initial studies showed adult elk had chronic hoof overgrowth, sole ulcers, and sloughed hoof capsules, but no cause was determined. To identify possible causes and characterize the earliest lesions, 9-, 7-, and 3-month-old elk were collected. Nine-month-old elk had sole ulcers (3/9 elk) and sloughed/overgrown hoof capsules (4/9 elk) similar to adults. Histologically, lesions consisted of coronary, heel bulb, and interdigital ulcers with suppurative inflammation, epithelial hyperplasia, deeply invasive spirochetes, and underrunning of the hoof capsule and heel-sole junction. Spirochetes were identified as Treponema via immunohistochemistry and polymerase chain reaction (PCR). Seven-month-old elk had similar underrunning foot ulcers (6/8 elk) with Treponema identified in all lesions but no chronic overgrowth or sloughed hoof capsules. Three-month-old calves had superficial coronary erosions with no inflammation or identifiable spirochetes (3/5 elk) but were culture/PCR positive for Treponema, suggesting possible early lesions. Lesions from 9- and 7-month-old elk included aerobic and anaerobic bacteria, many of which are associated with infectious foot disease in livestock. Antibody enzyme-linked immunosorbent assay of 7- and 3-month-old elk from the enzootic region showed a trend toward increased Treponema antibody titers compared to normal control elk from outside the region, further supporting the significance of Treponema in the pathogenesis of foot disease. Treponeme-associated hoof disease (TAHD) in elk, a debilitating and progressive condition, shares similarities to bovine digital dermatitis and contagious ovine digital dermatitis.


Asunto(s)
Ciervos , Enfermedades del Pie/veterinaria , Pezuñas y Garras/microbiología , Treponema/aislamiento & purificación , Infecciones por Treponema/veterinaria , Envejecimiento , Animales , Femenino , Enfermedades del Pie/microbiología , Pezuñas y Garras/patología , Masculino , Infecciones por Treponema/microbiología , Infecciones por Treponema/patología
14.
J Aquat Anim Health ; 30(4): 332-338, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30352480

RESUMEN

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, cost-effective method for identification of a broad range of bacterial taxa, but its accuracy for Vibrio spp. from samples of aquatic animal origin is unknown. We used DNA sequence analysis targeting two conserved genes, rpoB and rpoD, as the identification standard for 5 reference strains and 35 Vibrio spp. field isolates obtained from diagnostic aquaculture samples. Overall, MALDI-TOF MS correctly identified 100% of the five reference strains to the genus level and 80% (4 of 5) to the species level. For field isolates, 83% (29 of 35) were correctly identified to the genus level, and 49% (17 of 35) were correctly identified to the species level. Eight (23%) field isolates were incorrectly identified at the species level. The MALDI-TOF MS method produced no identification for 17% (6 of 35) of the field isolates. Using traditional culture identification, 100% of the five reference strains were correctly identified to the species level. All 35 field isolates were correctly identified to the genus level; 51% (18 of 35) of the isolates were identified correctly to the species level, while 29% (10 of 35) were misidentified at the species level. Overall, MALDI-TOF MS was comparable to phenotypic identification, and accuracy will likely improve with enhancement of MALDI-TOF MS database robustness.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Vibriosis/veterinaria , Vibrio/aislamiento & purificación , Animales , ADN Bacteriano , Enfermedades de los Peces/microbiología , Peces , Análisis de Secuencia de ADN , Vibrio/genética
15.
J Clin Microbiol ; 56(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29997200

RESUMEN

Escherichia coli is the most common cause of human and canine urinary tract infection (UTI). Clonal groups, often with high levels of antimicrobial resistance, are a major component of the E. coli population that causes human UTI. While little is known about the population structure of E. coli that causes UTI in dogs, there is evidence that dogs and humans can share fecal strains of E. coli and that human-associated strains can cause disease in dogs. In order to better characterize the E. coli strains that cause canine UTI, we analyzed 295 E. coli isolates obtained from canine urine samples from five veterinary diagnostic laboratories and analyzed their multilocus sequence types, phenotypic and genotypic antimicrobial resistance profiles, and virulence-associated gene repertoires. Sequence type 372 (ST372), an infrequent human pathogen, was the predominant sequence type in dogs at all locations. Extended-spectrum ß-lactamase-producing isolates with blaCTX-M genes were uncommon in canine isolates but when present were often associated with sequence types that have been described in human infections. This provides support for occasional cross-host-species sharing of strains that cause extraintestinal disease and highlights the importance of understanding the role of companion animals in the overall transmission patterns of extraintestinal pathogenic E. coli.


Asunto(s)
Enfermedades de los Perros/microbiología , Farmacorresistencia Bacteriana/genética , Infecciones por Escherichia coli/veterinaria , Infecciones Urinarias/veterinaria , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/efectos de los fármacos , Animales , Antibacterianos/farmacología , Perros , Infecciones por Escherichia coli/microbiología , Femenino , Genes Bacterianos/genética , Genotipo , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus/veterinaria , Fenotipo , Filogenia , Factores de Riesgo , Estados Unidos , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Virulencia/genética
16.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305512

RESUMEN

An increase in the prevalence of commensal Escherichia coli carrying blaCTX-M genes among dairy cattle was observed between 2008 and 2012 in Washington State. To study the molecular epidemiology of this change, we selected 126 blaCTX-M-positive and 126 blaCTX-M-negative isolates for determinations of the multilocus sequence types (MLSTs) and antibiotic resistance phenotypes from E. coli obtained during a previous study. For 99 isolates, we also determined the blaCTX-M alleles using PCR and sequencing and identified the replicon types of blaCTX-M-carrying plasmids. The blaCTX-M-negative E. coli isolates comprised 76 sequence types (STs) compared with 32 STs in blaCTX-M-positive E. coli isolates. The blaCTX-M-positive E. coli isolates formed three MLST clonal complexes, accounting for 83% of these isolates; 52% of blaCTX-M-negative E. coli isolates clustered into 10 clonal complexes, and the remainder were singletons. Overall, blaCTX-M-negative E. coli isolates had more diverse genotypes that were distinct to farms, whereas blaCTX-M-positive E. coli isolates had a clonal population structure and were widely disseminated on farms in both regions included in the study. Plasmid replicon types included IncI1 which predominated, followed by IncFIB and IncFIA/FIB. blaCTX-M-15 was the predominant CTX-M gene allele, followed by blaCTX-M-27 and blaCTX-M-14 There was no significant association between plasmid replicon types and bacterial STs, and neither clonal complexes nor major plasmid groups were associated with two discrete dairy-farming regions of Washington State.IMPORTANCE Infections caused by extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli occur globally and present treatment challenges because of their resistance to multiple antimicrobial drugs. Cattle are potential reservoirs of ESBL-producing Enterobacteriaceae, and so understanding the causes of successful dissemination of blaCTX-M genes in commensal bacteria will inform future approaches for the prevention of antibiotic-resistant pathogen emergence.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Proteínas de Escherichia coli/genética , Escherichia coli/genética , beta-Lactamasas/genética , Escherichia coli/enzimología , Infecciones por Escherichia coli/microbiología , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Plásmidos/genética , Prevalencia , Washingtón/epidemiología
17.
PLoS One ; 13(1): e0192006, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29364974

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0178707.].

18.
Emerg Infect Dis ; 24(1): 32-39, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29260688

RESUMEN

The often-noted and persistent increased incidence of Escherichia coli O157:H7 infections in rural areas is not well understood. We used a cohort of E. coli O157:H7 cases reported in Washington, USA, during 2005-2014, along with phylogenomic characterization of the infecting isolates, to identify geographic segregation of and temporal trends in specific phylogenetic lineages of E. coli O157:H7. Kernel estimation and generalized additive models demonstrated that pathogen lineages were spatially segregated during the period of analysis and identified a focus of segregation spanning multiple, predominantly rural, counties for each of the main clinical lineages, Ib, IIa, and IIb. These results suggest the existence of local reservoirs from which humans are infected. We also noted a secular increase in the proportion of lineage IIa and IIb isolates. Spatial segregation by phylogenetic lineage offers the potential to identify local reservoirs and intervene to prevent continued transmission.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Adolescente , Adulto , Niño , Preescolar , Demografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Factores de Riesgo , Factores de Tiempo , Washingtón/epidemiología , Adulto Joven
19.
Ecol Lett ; 20(10): 1325-1336, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28871636

RESUMEN

Superspreading, the phenomenon where a small proportion of individuals contribute disproportionately to new infections, has profound effects on disease dynamics. Superspreading can arise through variation in contacts, infectiousness or infectious periods. The latter has received little attention, yet it drives the dynamics of many diseases of critical public health, livestock health and conservation concern. Here, we present rare evidence of variation in infectious periods underlying a superspreading phenomenon in a free-ranging wildlife system. We detected persistent infections of Mycoplasma ovipneumoniae, the primary causative agent of pneumonia in bighorn sheep (Ovis canadensis), in a small number of older individuals that were homozygous at an immunologically relevant genetic locus. Interactions among age-structure, genetic composition and infectious periods may drive feedbacks in disease dynamics that determine the magnitude of population response to infection. Accordingly, variation in initial conditions may explain divergent population responses to infection that range from recovery to catastrophic decline and extirpation.


Asunto(s)
Neumonía por Mycoplasma/veterinaria , Enfermedades de las Ovejas/epidemiología , Borrego Cimarrón , Animales , Animales Salvajes , Mycoplasma ovipneumoniae , Neumonía , Ovinos
20.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733283

RESUMEN

Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 µg/ml tobramycin, 20 µg/ml ciprofloxacin, 300 µg/ml chloramphenicol, 30 µg/ml nalidixic acid, or 100 µg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log (P < 0.05). Increasing concentrations of osmotic compounds improved the effect, but there was a trade-off with increasing solution viscosity, whereby low-molecular-mass compounds (sucrose, 400-Da PEG) worked better than higher-mass compounds (maltodextrin, 3,350-Da PEG). Ten other A. baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity (r2 > 0.82; P < 0.002), and the relationship was generalizable for biofilms formed by A. baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics.IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of osmotic compounds and antibiotics against surface biofilms communities.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/fisiología , Ciprofloxacina/farmacología , Pruebas de Sensibilidad Microbiana , Ósmosis , Polietilenglicoles/farmacología , Polisacáridos/farmacología , Sacarosa/farmacología , Tobramicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...