Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 20(1): 68, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259115

RESUMEN

Exoskeletons are becoming the reference technology for assistance and augmentation of human motor functions in a wide range of application domains. Unfortunately, the exponential growth of this sector has not been accompanied by a rigorous risk assessment (RA) process, which is necessary to identify the major aspects concerning the safety and impact of this new technology on humans. This situation may seriously hamper the market uptake of new products. This paper presents the results of a survey that was circulated to understand how hazards are considered by exoskeleton users, from research and industry perspectives. Our analysis aimed to identify the perceived occurrence and the impact of a sample of generic hazards, as well as to collect suggestions and general opinions from the respondents that can serve as a reference for more targeted RA. Our results identified a list of relevant hazards for exoskeletons. Among them, misalignments and unintended device motion were perceived as key aspects for exoskeletons' safety. This survey aims to represent a first attempt in recording overall feedback from the community and contribute to future RAs and the identification of better mitigation strategies in the field.


Asunto(s)
Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Humanos , Encuestas y Cuestionarios
2.
Front Robot AI ; 8: 602878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937345

RESUMEN

The assessment of rehabilitation robot safety is a vital aspect of the development process, which is often experienced as difficult. There are gaps in best practices and knowledge to ensure safe usage of rehabilitation robots. Currently, safety is commonly assessed by monitoring adverse events occurrence. The aim of this article is to explore how safety of rehabilitation robots can be assessed early in the development phase, before they are used with patients. We are suggesting a uniform approach for safety validation of robots closely interacting with humans, based on safety skills and validation protocols. Safety skills are an abstract representation of the ability of a robot to reduce a specific risk or deal with a specific hazard. They can be implemented in various ways, depending on the application requirements, which enables the use of a single safety skill across a wide range of applications and domains. Safety validation protocols have been developed that correspond to these skills and consider domain-specific conditions. This gives robot users and developers concise testing procedures to prove the mechanical safety of their robotic system, even when the applications are in domains with a lack of standards and best practices such as the healthcare domain. Based on knowledge about adverse events occurring in rehabilitation robot use, we identified multi-directional excessive forces on the soft tissue level and musculoskeletal level as most relevant hazards for rehabilitation robots and related them to four safety skills, providing a concrete starting point for safety assessment of rehabilitation robots. We further identified a number of gaps which need to be addressed in the future to pave the way for more comprehensive guidelines for rehabilitation robot safety assessments. Predominantly, besides new developments of safety by design features, there is a strong need for reliable measurement methods as well as acceptable limit values for human-robot interaction forces both on skin and joint level.

3.
Front Robot AI ; 7: 557606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33501319

RESUMEN

Robot-assisted gait training (RAGT) devices are used in rehabilitation to improve patients' walking function. While there are some reports on the adverse events (AEs) and associated risks in overground exoskeletons, the risks of stationary gait trainers cannot be accurately assessed. We therefore aimed to collect information on AEs occurring during the use of stationary gait robots and identify associated risks, as well as gaps and needs, for safe use of these devices. We searched both bibliographic and full-text literature databases for peer-reviewed articles describing the outcomes of stationary RAGT and specifically mentioning AEs. We then compiled information on the occurrence and types of AEs and on the quality of AE reporting. Based on this, we analyzed the risks of RAGT in stationary gait robots. We included 50 studies involving 985 subjects and found reports of AEs in 18 of those studies. Many of the AE reports were incomplete or did not include sufficient detail on different aspects, such as severity or patient characteristics, which hinders the precise counts of AE-related information. Over 169 device-related AEs experienced by between 79 and 124 patients were reported. Soft tissue-related AEs occurred most frequently and were mostly reported in end-effector-type devices. Musculoskeletal AEs had the second highest prevalence and occurred mainly in exoskeleton-type devices. We further identified physiological AEs including blood pressure changes that occurred in both exoskeleton-type and end-effector-type devices. Training in stationary gait robots can cause injuries or discomfort to the skin, underlying tissue, and musculoskeletal system, as well as unwanted blood pressure changes. The underlying risks for the most prevalent injury types include excessive pressure and shear at the interface between robot and human (cuffs/harness), as well as increased moments and forces applied to the musculoskeletal system likely caused by misalignments (between joint axes of robot and human). There is a need for more structured and complete recording and dissemination of AEs related to robotic gait training to increase knowledge on risks. With this information, appropriate mitigation strategies can and should be developed and implemented in RAGT devices to increase their safety.

4.
IEEE Int Conf Rehabil Robot ; 2019: 1109-1114, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374778

RESUMEN

Rehabilitation robots can provide high intensity and dosage training or assist patients in activities of daily living and decrease physical strain on clinicians. However, the physical human robot interaction poses a major safety issue, as the close physical contact between user and robot can lead to injuries. Moreover, the magnitude of forces as well as best practices for measuring them, are widely unknown. Therefore, a measurement setup was developed to assess normal and tangential forces that occur in the contact area between an arm and a splint. Force sensitive resistors and a force / torque sensor were combined with two different splint shapes. Initial experiments indicated that the setup gives some insight into magnitudes and distribution of normal forces on the splint-forearm-interface. Experiment results show a dependency of force distributions on the splint shape and sensor locations. Based on these outcomes, we proposed an improved setup for subsequent investigations.


Asunto(s)
Robótica , Actividades Cotidianas , Antebrazo/fisiología , Humanos , Prueba de Estudio Conceptual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...