Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 46(11): 1938-1950, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29987541

RESUMEN

In vivo development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotissue increasingly balancing the hemodynamically induced loads as the polymer degrades. Computational models of neovessel development can help delineate relative time-dependent contributions of the immunobiological and mechanobiological processes that determine graft success or failure. In this paper, we compare computational results informed by long-term studies of neovessel development in immuno-compromised and immuno-competent mice. Simulations suggest that an early exuberant inflammatory response can limit subsequent mechano-sensing by synthetic intramural cells and thereby attenuate the desired long-term mechano-mediated production of matrix. Simulations also highlight key inflammatory differences in the two mouse models, which allow grafts in the immuno-compromised mouse to better match the biomechanical properties of the native vessel. Finally, the predicted inflammatory time courses revealed critical periods of graft remodeling. We submit that computational modeling can help uncover mechanisms of observed neovessel development and improve the design of the scaffold or its clinical use.


Asunto(s)
Prótesis Vascular , Matriz Extracelular/química , Modelos Cardiovasculares , Neovascularización Fisiológica , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Ratones , Implantación de Prótesis
2.
Adv Healthc Mater ; 5(3): 319-325, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26627057

RESUMEN

Congenital heart defect interventions may benefit from the fabrication of patient-specific vascular grafts because of the wide array of anatomies present in children with cardiovascular defects. 3D printing is used to establish a platform for the production of custom vascular grafts, which are biodegradable, mechanically compatible with vascular tissues, and support neotissue formation and growth.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Animales , Prótesis Vascular , Células Cultivadas , Humanos , Ratones , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA