Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 18(2): e1010339, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35157735

RESUMEN

Adoptive T-cell immunotherapy has provided promising results in the treatment of viral complications in humans, particularly in the context of immunocompromised patients who have exhausted all other clinical options. The capacity to expand T cells from healthy immune individuals is providing a new approach to anti-viral immunotherapy, offering rapid off-the-shelf treatment with tailor-made human leukocyte antigen (HLA)-matched T cells. While most of this research has focused on the treatment of latent viral infections, emerging evidence that SARS-CoV-2-specific T cells play an important role in protection against COVID-19 suggests that the transfer of HLA-matched allogeneic off-the-shelf virus-specific T cells could provide a treatment option for patients with active COVID-19 or at risk of developing COVID-19. We initially screened 60 convalescent individuals and based on HLA typing and T-cell response profile, 12 individuals were selected for the development of a SARS-CoV-2-specific T-cell bank. We demonstrate that these T cells are specific for up to four SARS-CoV-2 antigens presented by a broad range of both HLA class I and class II alleles. These T cells show consistent functional and phenotypic properties, display cytotoxic potential against HLA-matched targets and can recognize HLA-matched cells infected with different SARS-CoV-2 variants. These observations demonstrate a robust approach for the production of SARS-CoV-2-specific T cells and provide the impetus for the development of a T-cell repository for clinical assessment.


Asunto(s)
Antígenos HLA/inmunología , Inmunoterapia Adoptiva , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Epítopos de Linfocito T , Femenino , Células HEK293 , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Adulto Joven
2.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613328

RESUMEN

Development of the immune system can be influenced by diverse extrinsic and intrinsic factors that influence the risk of disease. Severe early life respiratory syncytial virus (RSV) infection is associated with persistent immune alterations. Previously, our group had shown that adult mice orally supplemented with Lactobacillus johnsonii exhibited decreased airway immunopathology following RSV infection. Here, we demonstrate that offspring of mice supplemented with L. johnsonii exhibit reduced airway mucus and Th2 cell-mediated response to RSV infection. Maternal supplementation resulted in a consistent gut microbiome in mothers and their offspring. Importantly, supplemented maternal plasma and breastmilk, and offspring plasma, exhibited decreased inflammatory metabolites. Cross-fostering studies showed that prenatal Lactobacillus exposure led to decreased Th2 cytokines and lung inflammation following RSV infection, while postnatal Lactobacillus exposure diminished goblet cell hypertrophy and mucus production in the lung in response to airway infection. These studies demonstrate that Lactobacillus modulation of the maternal microbiome and associated metabolic reprogramming enhance airway protection against RSV in neonates.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Embarazo , Células Th2/inmunología
3.
Allergy ; 75(9): 2279-2293, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32277487

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) affects most infants early in life and is associated with increased asthma risk. The specific mechanism remains unknown. OBJECTIVE: To investigate the role of uric acid (UA) and IL-1ß in RSV immunopathology and asthma predisposition. METHODS: Tracheal aspirates from human infants with and without RSV were collected and analyzed for pro-IL-1ß mRNA and protein to establish a correlation in human disease. Neonatal mouse models of RSV were employed, wherein mice infected at 6-7 days of life were analyzed at 8 days postinfection, 5 weeks postinfection, or after a chronic cockroach allergen asthma model. A xanthine oxidase inhibitor or IL-1 receptor antagonist was administered during RSV infection. RESULTS: Human tracheal aspirates from RSV-infected infants showed elevated pro-IL-1ß mRNA and protein. Inhibition of UA or IL-1ß during neonatal murine RSV infection decreased mucus production, reduced cellular infiltrates to the lung (especially ILC2s), and decreased type 2 immune responses. Inhibition of either UA or IL-1ß during RSV infection led to chronic reductions in pulmonary immune cell composition and reduced type 2 immune responses and reduced similar responses after challenge with cockroach antigen. CONCLUSIONS: Inhibiting UA and IL-1ß during RSV infection ameliorates RSV immunopathology, reduces the consequences of allergen-induced asthma, and presents new therapeutic targets to reduce early-life viral-induced asthma development.


Asunto(s)
Asma , Infecciones por Virus Sincitial Respiratorio , Animales , Inmunidad Innata , Pulmón , Linfocitos , Ratones , Ratones Endogámicos BALB C , Virus Sincitiales Respiratorios , Ácido Úrico
4.
Cell Rep ; 30(8): 2512-2525.e9, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101732

RESUMEN

Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.


Asunto(s)
Inmunidad/efectos de los fármacos , Interferón Tipo I/farmacología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Parásitos/inmunología , Anfotericina B/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos , Humanos , Inflamación/inmunología , Inflamación/patología , Interferón gamma/farmacología , Ratones Endogámicos C57BL , Nitrilos , Parásitos/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Mucosal Immunol ; 13(4): 691-701, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32047272

RESUMEN

Respiratory syncytial virus (RSV) infects a majority of infants and can cause severe disease leading to increased risk to develop asthma later in life. In the present studies we detected high levels of uric acid pathway components during RSV infection and examined whether they altered the pathogenesis of RSV infection. Inhibition of uric acid (UA) pathway activation during RSV infection in airway epithelial cells using XOI decreased the expression of IL-33, thymic stromal lymphopoietin (TSLP), and CCL2. In addition, treatment of RSV infected bone marrow-derived macrophages with XOI decreased production of IL-1ß. Thus, UA activation of different cell populations contributes different innate immune mediators that promote immunopathogenesis. When mice were treated with XOI or interleukin-1 receptor antagonist (IL1-ra) during RSV infection decreased pulmonary mucus was observed along with significantly reduced numbers of ILC2 and macrophages, accompanied by decreased IL-33 in bronchoalveolar lavage of the treated mice. These findings provide mechanistic insight into the development of RSV immunopathology and indicate that xanthine metabolites and UA are key immunoregulator molecules during RSV infection. Moreover, these findings suggest uric acid and IL-1ß as possible therapeutic targets to attenuate severe RSV disease.


Asunto(s)
Citocinas/metabolismo , Inmunidad Innata , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios/fisiología , Células Th2/inmunología , Células Th2/metabolismo , Ácido Úrico/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Macrófagos , Redes y Vías Metabólicas , Ratones , Mucosa Respiratoria/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Transducción de Señal
6.
Mucosal Immunol ; 12(2): 445-456, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617299

RESUMEN

Stem cell factor (SCF) binds to the receptor c-Kit that is expressed on a number of myeloid and lymphoid cell populations, including Type 2 innate lymphoid cells (ILC2). However the importance of the SCF/c-Kit interaction in ILC2 has not been studied. Here we investigate the role of a specific SCF isoform, SCF248, in the allergic asthmatic response and SCF/c-Kit in ILC2 activation during chronic allergy. We observed that mice treated with a monoclonal antibody specific for SCF248 attenuated the development of chronic asthmatic disease by decreasing the number of mast cells, ILC2 and eosinophils, as well as reducing the accompanying pathogenic cytokine responses. These data were supported using SCFfl/fl-Col1-Cre-ERT mice and W/Wv mice that demonstrated the importance of the stem cell factor/c-Kit activation during chronic allergy and the accumulation of c-kit+ cells. Finally, these data demonstrate for the first time that SCF could activate ILC2 cells in vitro for the production of key allergic cytokines. Together these findings indicate that SCF is a critical cytokine involved in the activation of ILC2 that lead to more severe outcomes during chronic allergy and that the SCF248 isoform could be an important therapeutic target to control the disease progression.


Asunto(s)
Asma/inmunología , Pulmón/patología , Linfocitos/inmunología , Factor de Células Madre/metabolismo , Alérgenos/inmunología , Animales , Células Cultivadas , Enfermedad Crónica , Colágeno Tipo I/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/genética , Factor de Células Madre/inmunología , Células Th2/inmunología
7.
J Immunol ; 200(4): 1443-1456, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29321276

RESUMEN

Differentiation of CD4+ Th cells is critical for immunity to malaria. Several innate immune signaling pathways have been implicated in the detection of blood-stage Plasmodium parasites, yet their influence over Th cell immunity remains unclear. In this study, we used Plasmodium-reactive TCR transgenic CD4+ T cells, termed PbTII cells, during nonlethal P. chabaudi chabaudi AS and P. yoelii 17XNL infection in mice, to examine Th cell development in vivo. We found no role for caspase1/11, stimulator of IFN genes, or mitochondrial antiviral-signaling protein, and only modest roles for MyD88 and TRIF-dependent signaling in controlling PbTII cell expansion. In contrast, IFN regulatory factor 3 (IRF3) was important for supporting PbTII expansion, promoting Th1 over T follicular helper (Tfh) differentiation, and controlling parasites during the first week of infection. IRF3 was not required for early priming by conventional dendritic cells, but was essential for promoting CXCL9 and MHC class II expression by inflammatory monocytes that supported PbTII responses in the spleen. Thereafter, IRF3-deficiency boosted Tfh responses, germinal center B cell and memory B cell development, parasite-specific Ab production, and resolution of infection. We also noted a B cell-intrinsic role for IRF3 in regulating humoral immune responses. Thus, we revealed roles for IRF3 in balancing Th1- and Tfh-dependent immunity during nonlethal infection with blood-stage Plasmodium parasites.


Asunto(s)
Diferenciación Celular/inmunología , Factor 3 Regulador del Interferón/inmunología , Malaria/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Células TH1/inmunología , Animales , Femenino , Centro Germinal/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Bazo/inmunología
8.
Int J Parasitol ; 47(14): 913-922, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28864033

RESUMEN

The artemisinins are the first-line therapy for severe and uncomplicated malaria, since they cause rapid declines in parasitemia after treatment. Despite this, in vivo mechanisms underlying this rapid decline remain poorly characterised. The overall decline in parasitemia is the net effect of drug inhibition of parasites and host clearance, which competes against any ongoing parasite proliferation. Separating these mechanisms in vivo was not possible through measurements of total parasitemia alone. Therefore, we employed an adoptive transfer approach in which C57BL/6J mice were transfused with Plasmodium berghei ANKA strain-infected, fluorescent red blood cells, and subsequently drug-treated. This approach allowed us to distinguish between the initial drug-treated generation of parasites (Gen0), and their progeny (Gen1). Artesunate efficiently impaired maturation of Gen0 parasites, such that a sufficiently high dose completely arrested maturation after 6h of in vivo exposure. In addition, artesunate-affected parasites were cleared from circulation with a half-life of 6.7h. In vivo cell depletion studies using clodronate liposomes revealed an important role for host phagocytes in the removal of artesunate-affected parasites, particularly ring and trophozoite stages. Finally, we found that a second antimalarial drug, mefloquine, was less effective than artesunate at suppressing parasite maturation and driving host-mediated parasite clearance. Thus, we propose that in vivo artesunate treatment causes rapid decline in parasitemia by arresting parasite maturation and encouraging phagocyte-mediated clearance of parasitised RBCs.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Traslado Adoptivo , Animales , Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Artemisininas/farmacología , Artesunato , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Femenino , Citometría de Flujo , Malaria/parasitología , Mefloquina/administración & dosificación , Mefloquina/farmacología , Ratones , Ratones Endogámicos C57BL , Parasitemia/parasitología , Fagocitos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium yoelii/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 114(29): 7701-7706, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673996

RESUMEN

Severe malaria and associated high parasite burdens occur more frequently in humans lacking robust adaptive immunity to Plasmodium falciparum Nevertheless, the host may partly control blood-stage parasite numbers while adaptive immunity is gradually established. Parasite control has typically been attributed to enhanced removal of parasites by the host, although in vivo quantification of this phenomenon remains challenging. We used a unique in vivo approach to determine the fate of a single cohort of semisynchronous, Plasmodium berghei ANKA- or Plasmodium yoelii 17XNL-parasitized red blood cells (pRBCs) after transfusion into naive or acutely infected mice. As previously shown, acutely infected mice, with ongoing splenic and systemic inflammatory responses, controlled parasite population growth more effectively than naive controls. Surprisingly, however, this was not associated with accelerated removal of pRBCs from circulation. Instead, transfused pRBCs remained in circulation longer in acutely infected mice. Flow cytometric assessment and mathematical modeling of intraerythrocytic parasite development revealed an unexpected and substantial slowing of parasite maturation in acutely infected mice, extending the life cycle from 24 h to 40 h. Importantly, impaired parasite maturation was the major contributor to control of parasite growth in acutely infected mice. Moreover, by performing the same experiments in rag1-/- mice, which lack T and B cells and mount weak inflammatory responses, we revealed that impaired parasite maturation is largely dependent upon the host response to infection. Thus, impairment of parasite maturation represents a host-mediated, immune system-dependent mechanism for limiting parasite population growth during the early stages of an acute blood-stage Plasmodium infection.


Asunto(s)
Interacciones Huésped-Parásitos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium berghei/fisiología , Plasmodium falciparum/fisiología , Inmunidad Adaptativa , Animales , Citocinas/metabolismo , Eritrocitos/parasitología , Femenino , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Sistema Inmunológico , Inflamación , Malaria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Teóricos , Plasmodium yoelii/fisiología
10.
PLoS Pathog ; 12(11): e1005999, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27812214

RESUMEN

Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Inmunidad Humoral/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Malaria/inmunología , Receptor de Interferón alfa y beta/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Plasmodium chabaudi/inmunología , Plasmodium yoelii/inmunología , Transducción de Señal/inmunología
11.
Cell Rep ; 17(2): 399-412, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705789

RESUMEN

The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata/genética , Interferón Tipo I/genética , Malaria Falciparum/inmunología , Antiparasitarios/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Voluntarios Sanos , Humanos , Interferón Tipo I/inmunología , Interferón gamma/genética , Interleucina-10/genética , Interleucina-10/inmunología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Células TH1/inmunología , Células TH1/metabolismo
13.
PLoS Negl Trop Dis ; 10(2): e0004415, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26872334

RESUMEN

Chronic disease caused by infections, cancer or autoimmunity can result in profound immune suppression. Immunoregulatory networks are established to prevent tissue damage caused by inflammation. Although these immune checkpoints preserve tissue function, they allow pathogens and tumors to persist, and even expand. Immune checkpoint blockade has recently been successfully employed to treat cancer. This strategy modulates immunoregulatory mechanisms to allow host immune cells to kill or control tumors. However, the utility of this approach for controlling established infections has not been extensively investigated. Here, we examined the potential of modulating glucocorticoid-induced TNF receptor-related protein (GITR) on T cells to improve anti-parasitic immunity in blood and spleen tissue from visceral leishmaniasis (VL) patients infected with Leishmania donovani. We found little effect on parasite growth or parasite-specific IFNγ production. However, this treatment reversed the improved anti-parasitic immunity achieved by IL-10 signaling blockade. Further investigations using an experimental VL model caused by infection of C57BL/6 mice with L. donovani revealed that this negative effect was prominent in the liver, dependent on parasite burden and associated with an accumulation of Th1 cells expressing high levels of KLRG-1. Nevertheless, combined anti-IL-10 and anti-GITR mAb treatment could improve anti-parasitic immunity when used with sub-optimal doses of anti-parasitic drug. However, additional studies with VL patient samples indicated that targeting GITR had no overall benefit over IL-10 signaling blockade alone at improving anti-parasitic immune responses, even with drug treatment cover. These findings identify several important factors that influence the effectiveness of immune modulation, including parasite burden, target tissue and the use of anti-parasitic drug. Critically, these results also highlight potential negative effects of combining different immune modulation strategies.


Asunto(s)
Inmunoterapia , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/terapia , Animales , Citocinas/inmunología , Femenino , Humanos , Interleucina-10/inmunología , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Bazo/parasitología , Células TH1/inmunología
14.
PLoS Pathog ; 12(1): e1005398, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765224

RESUMEN

Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.


Asunto(s)
Inflamación/inmunología , Interleucina-10/biosíntesis , Leishmaniasis Visceral/inmunología , Proteínas Represoras/inmunología , Células TH1/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Inflamación/patología , Interleucina-10/inmunología , Leishmaniasis Visceral/patología , Malaria/inmunología , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Fluorescente , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Linfocitos T Reguladores/inmunología
15.
J Immunol ; 195(12): 5707-17, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26538396

RESUMEN

Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17-producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2(+) inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.


Asunto(s)
Interleucina-17/metabolismo , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Hígado/inmunología , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Terapia de Inmunosupresión , Leishmania donovani/crecimiento & desarrollo , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/parasitología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores CCR2/metabolismo , Superóxido Dismutasa/metabolismo , Linfocitos T/parasitología
16.
Sci Rep ; 5: 9412, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25944649

RESUMEN

The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Malaria Falciparum/parasitología , Carga de Parásitos/métodos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Animales , Simulación por Computador , Susceptibilidad a Enfermedades , Femenino , Malaria Falciparum/sangre , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Plasmodium falciparum/citología , Índice de Severidad de la Enfermedad
17.
Clin Vaccine Immunol ; 22(5): 477-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25716232

RESUMEN

Acute lower respiratory tract infections (ALRTI) are the leading cause of global childhood mortality, with human respiratory syncytial virus (hRSV) being a major cause of viral ALRTI in young children worldwide. In sub-Saharan Africa, many young children experience severe illnesses due to hRSV or Plasmodium infection. Although the incidence of malaria in this region has decreased in recent years, there remains a significant opportunity for coinfection. Recent data show that febrile young children infected with Plasmodium are often concurrently infected with respiratory viral pathogens but are less likely to suffer from pneumonia than are non-Plasmodium-infected children. Here, we hypothesized that blood-stage Plasmodium infection modulates pulmonary inflammatory responses to a viral pathogen but does not aid its control in the lung. To test this, we established a novel coinfection model in which mice were simultaneously infected with pneumovirus of mice (PVM) (to model hRSV) and blood-stage Plasmodium chabaudi chabaudi AS (PcAS) parasites. We found that PcAS infection was unaffected by coinfection with PVM. In contrast, PVM-associated weight loss, pulmonary cytokine responses, and immune cell recruitment to the airways were substantially reduced by coinfection with PcAS. Importantly, PcAS coinfection facilitated greater viral dissemination throughout the lung. Although Plasmodium coinfection induced low levels of systemic interleukin-10 (IL-10), this regulatory cytokine played no role in the modulation of lung inflammation or viral dissemination. Instead, we found that Plasmodium coinfection drove an early systemic beta interferon (IFN-ß) response. Therefore, we propose that blood-stage Plasmodium coinfection may exacerbate viral dissemination and impair inflammation in the lung by dysregulating type I IFN-dependent responses to respiratory viruses.


Asunto(s)
Bronquiolitis Viral/inmunología , Coinfección , Interferón beta/inmunología , Pulmón/virología , Malaria/inmunología , Infecciones por Pneumovirus/inmunología , Pneumovirus/inmunología , Animales , Bronquiolitis Viral/virología , Modelos Animales de Enfermedad , Femenino , Inflamación/inmunología , Inflamación/parasitología , Inflamación/virología , Interferón beta/sangre , Interleucina-10/inmunología , Pulmón/inmunología , Malaria/complicaciones , Plasmodium chabaudi , Pneumovirus/patogenicidad , Pneumovirus/fisiología , Infecciones por Pneumovirus/complicaciones , Virus Sincitial Respiratorio Humano/patogenicidad , Carga Viral , Pérdida de Peso
18.
Eur J Immunol ; 45(1): 130-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25319247

RESUMEN

Type I IFN signaling suppresses splenic T helper 1 (Th1) responses during blood-stage Plasmodium berghei ANKA (PbA) infection in mice, and is crucial for mediating tissue accumulation of parasites and fatal cerebral symptoms via mechanisms that remain to be fully characterized. Interferon regulatory factor 7 (IRF7) is considered to be a master regulator of type I IFN responses. Here, we assessed IRF7 for its roles during lethal PbA infection and nonlethal Plasmodium chabaudi chabaudi AS (PcAS) infection as two distinct models of blood-stage malaria. We found that IRF7 was not essential for tissue accumulation of parasites, cerebral symptoms, or brain pathology. Using timed administration of anti-IFNAR1 mAb, we show that late IFNAR1 signaling promotes fatal disease via IRF7-independent mechanisms. Despite this, IRF7 significantly impaired early splenic Th1 responses and limited control of parasitemia during PbA infection.  Finally, IRF7 also suppressed antiparasitic immunity and Th1 responses during nonlethal PcAS infection. Together, our data support a model in which IRF7 suppresses antiparasitic immunity in the spleen, while IFNAR1-mediated, but IRF7-independent, signaling contributes to pathology in the brain during experimental blood-stage malaria.


Asunto(s)
Encéfalo/inmunología , Factor 7 Regulador del Interferón/inmunología , Malaria Cerebral/inmunología , Receptor de Interferón alfa y beta/inmunología , Bazo/inmunología , Células TH1/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/parasitología , Susceptibilidad a Enfermedades , Eritrocitos/parasitología , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos , Factor 7 Regulador del Interferón/genética , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/inmunología , Plasmodium chabaudi/inmunología , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/genética , Transducción de Señal , Bazo/efectos de los fármacos , Bazo/parasitología , Células TH1/parasitología , Factores de Tiempo
19.
J Clin Invest ; 124(6): 2483-96, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24789914

RESUMEN

Many pathogens, including viruses, bacteria, and protozoan parasites, suppress cellular immune responses through activation of type I IFN signaling. Recent evidence suggests that immune suppression and susceptibility to the malaria parasite, Plasmodium, is mediated by type I IFN; however, it is unclear how type I IFN suppresses immunity to blood-stage Plasmodium parasites. During experimental severe malaria, CD4+ Th cell responses are suppressed, and conventional DC (cDC) function is curtailed through unknown mechanisms. Here, we tested the hypothesis that type I IFN signaling directly impairs cDC function during Plasmodium infection in mice. Using cDC-specific IFNAR1-deficient mice, and mixed BM chimeras, we found that type I IFN signaling directly affects cDC function, limiting the ability of cDCs to prime IFN-γ-producing Th1 cells. Although type I IFN signaling modulated all subsets of splenic cDCs, CD8- cDCs were especially susceptible, exhibiting reduced phagocytic and Th1-promoting properties in response to type I IFNs. Additionally, rapid and systemic IFN-α production in response to Plasmodium infection required type I IFN signaling in cDCs themselves, revealing their contribution to a feed-forward cytokine-signaling loop. Together, these data suggest abrogation of type I IFN signaling in CD8- splenic cDCs as an approach for enhancing Th1 responses against Plasmodium and other type I IFN-inducing pathogens.


Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/metabolismo , Malaria/inmunología , Células TH1/inmunología , Animales , Antígenos CD8/metabolismo , Células Dendríticas/clasificación , Femenino , Tolerancia Inmunológica , Inmunidad Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Plasmodium berghei/inmunología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunología
20.
J Immunol ; 192(8): 3709-18, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634490

RESUMEN

Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Animales , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Clorhidrato de Fingolimod , Inmunosupresores/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/parasitología , Activación de Linfocitos/inmunología , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Tejido Linfoide/parasitología , Ratones , Ratones Noqueados , Glicoles de Propileno/farmacología , Esfingosina/análogos & derivados , Esfingosina/farmacología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...