Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6477, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838708

RESUMEN

Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering.


Asunto(s)
Deportes , Dispositivos Electrónicos Vestibles , Electricidad , Impresión Tridimensional
2.
Research (Wash D C) ; 2022: 9840574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35169712

RESUMEN

Flame-retardant and thermal management structures have attracted great attention due to the requirement of high-temperature exposure in industrial, aerospace, and thermal power fields, but the development of protective fire-retardant structures with complex shapes to fit arbitrary surfaces is still challenging. Herein, we reported a rotation-blade casting-assisted 3D printing process to fabricate nacre-inspired structures with exceptional mechanical and flame-retardant properties, and the related fundamental mechanisms are studied. 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) modified boron nitride nanoplatelets (BNs) were aligned by rotation-blade casting during the 3D printing process to build the "brick and mortar" architecture. The 3D printed structures are more lightweight, while having higher fracture toughness than the natural nacre, which is attributed to the crack deflection, aligned BN (a-BNs) bridging, and pull-outs reinforced structures by the covalent bonding between TMSPMA grafted a-BNs and polymer matrix. Thermal conductivity is enhanced by 25.5 times compared with pure polymer and 5.8 times of anisotropy due to the interconnection of a-BNs. 3D printed heat-exchange structures with vertically aligned BNs in complex shapes were demonstrated for efficient thermal control of high-power light-emitting diodes. 3D printed helmet and armor with a-BNs show exceptional mechanical and fire-retardant properties, demonstrating integrated mechanical and thermal protection.

3.
Adv Sci (Weinh) ; 9(1): e2103574, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741444

RESUMEN

Flexible thermoelectric generators (f-TEGs) have demonstrated great potential in wearable self-powered health monitoring devices. However, the existing wearable f-TEGs are neither flexible enough to bend and stretch while maintaining the device's integrity with a good TE performance nor directly compatible with clothes materials. Here, ultraflexible fabric-based thermoelectric generators (uf-TEGs) are proposed with conductive cloth electrodes and elastic fabric substrate. The patterned elastic fabric substrate fits the rigid cuboids well, together with serpentine structured cloth electrodes, rendering uf-TEG with excellent integrity and flexibility, thereby achieving a highly functional TE performance when strain reaches 30% or on arbitrarily shaped heat sources. The uf-TEGs show a large peak power of 64.10 µW for a temperature difference of 33.24 K with a high voltage output of 111.49 mV, which is superior compared to previously reported fabric-based TEG devices, and it is still functional after the water immersion test. Besides the energy harvesting function, with both the temperature sensing ability and the touch perception, this uf-TEG is demonstrated as the electrical skin when mounted on a robot. Moreover, due to the wind-sensitive performance and self-power ability, the uf-TEGs are assembled on cloth as wearable health and motion monitoring devices.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Textiles , Sensación Térmica , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Suministros de Energía Eléctrica , Electrónica , Diseño de Equipo , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA