Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(12): e0243286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33270761

RESUMEN

In vitro and ex vivo development of novel therapeutic agents requires reliable and accurate analyses of the cell conditions they were preclinical tested for, such as apoptosis. The detection of apoptotic cells by annexin V (AV) coupled to fluorophores has often shown limitations in the choice of the dye due to interference with other fluorescent-labeled cell markers. The SNAP-tag technology is an easy, rapid and versatile method for functionalization of proteins and was therefore used for labeling AV with various fluorophores. We generated the fusion protein AV-SNAP and analyzed its capacity for the specific display of apoptotic cells in various assays with therapeutic agents. AV-SNAP showed an efficient coupling reaction with five different fluorescent dyes. Two selected fluorophores were tested with suspension, adherent and peripheral blood cells, treated by heat-shock or apoptosis-inducing therapeutic agents. Flow cytometry analysis of apoptotic cells revealed a strong visualization using AV-SNAP coupled to these two fluorophores exemplary, which was comparable to a commercial AV-Assay-kit. The combination of the apoptosis-specific binding protein AV with the SNAP-tag provides a novel solid method to facilitate protein labeling using several, easy to change, fluorescent dyes at once. It avoids high costs and allows an ordinary exchange of dyes and easier use of other fluorescent-labeled cell markers, which is of high interest for the preclinical testing of therapeutic agents in e.g. cancer research.


Asunto(s)
Apoptosis/fisiología , Colorantes Fluorescentes/química , Coloración y Etiquetado/métodos , Marcadores de Afinidad/química , Anexina A5/química , Anexina A5/metabolismo , Células Sanguíneas/metabolismo , Línea Celular Tumoral , Citometría de Flujo/métodos , Humanos , Neoplasias/metabolismo , Proteínas/química , Proteínas/metabolismo , Tecnología
2.
Sci Rep ; 6: 39462, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000709

RESUMEN

Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 µg/ml (95% confidence interval: 33 µg/ml-37 µg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Linfocitos B/parasitología , Unión Competitiva , Línea Celular , Epítopos/inmunología , Eritrocitos/inmunología , Humanos , Inmunoglobulina G/inmunología , Concentración 50 Inhibidora , Leucocitos Mononucleares/parasitología , Conformación Molecular , Unión Proteica , Resonancia por Plasmón de Superficie , Nicotiana
3.
Malar J ; 15(1): 279, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27188716

RESUMEN

BACKGROUND: The high incidence and mortality rate of malaria remains a serious burden for many developing countries, and a vaccine that induces durable and highly effective immune responses is, therefore, desirable. An earlier analysis of the stage-specific in vitro efficacy of a malaria vaccine candidate cocktail (VAMAX) considered the general properties of complex multi-component, multi-stage combination vaccines in rabbit immunization experiments using a hyper-immunization protocol featuring six consecutive boosts and a strong, lipopolysaccharide-based adjuvant. This follow-up study investigates the effect of antigen dose on the in vitro efficacy of the malaria vaccine cocktail using a conventional vaccination scheme (one prime and two boosts) and a human-compatible adjuvant (Alhydrogel(®)). RESULTS: IgG purified from rabbits immunized with 0.1, 1, 10 or 50 µg doses of the VAMAX vaccine candidate cocktail was analysed for total IgG and antigen-cocktail-specific titers. An increase in cocktail-specific titers was observed between 0.1 and 1 µg and between 10 and 50 µg, whereas no significant difference in titers was observed between 1 and 10 µg. Antigen component-specific antibody titers and stage-specific in vitro efficacy assays were performed with pooled IgG from animals immunized with 1 and 50 µg of the VAMAX cocktail. Here, the component-specific antibody levels showed clear dose dependency whereas the determined stage-specific in vitro IC50 values (as a correlate of efficacy) were only dependent on the titer amounts of stage-specific antibodies. CONCLUSIONS: The stage-specific in vitro efficacy of the VAMAX cocktail strongly correlates with the corresponding antigen-specific titers, which for their part depend on the antigen dose, but there is no indication that the dose has an effect on the in vitro efficacy of the induced antibodies. A comparison of these results with those obtained in the previous hyper-immunization study (where higher levels of antigen-specific IgG were observed) suggests that there is a significant need to induce an immune response matching efficacy requirements, especially for a PfAMA1-based blood stage vaccine, by using higher doses, better adjuvants and/or better formulations.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Hidróxido de Aluminio/administración & dosificación , Anticuerpos Antiprotozoarios/sangre , Esquemas de Inmunización , Vacunas contra la Malaria/inmunología , Animales , Relación Dosis-Respuesta Inmunológica , Estudios de Seguimiento , Inmunoglobulina G/sangre , Vacunas contra la Malaria/administración & dosificación , Conejos
4.
Sci Rep ; 6: 20431, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853456

RESUMEN

Human papillomaviruses (HPV) cause cervical cancer and have recently also been implicated in mouth, laryngeal and anogenital cancers. There are three commercially available prophylactic vaccines that show good efficacy; however, efforts to develop second-generation vaccines that are more affordable, stable and elicit a wider spectrum of cross-neutralising immunity are still ongoing. Testing antisera elicited by current and candidate HPV vaccines for neutralizing antibodies is done using a HPV pseudovirion (PsV)-based neutralisation assay (PBNA). PsVs are produced by transfection of mammalian cell cultures with plasmids expressing L1 and L2 capsid proteins, and a reporter gene plasmid, a highly expensive process. We investigated making HPV-16 PsVs in plants, in order to develop a cheaper alternative. The secreted embryonic alkaline phosphatase (SEAP) reporter gene and promoter were cloned into a geminivirus-derived plant expression vector, in order to produce circular dsDNA replicons. This was co-introduced into Nicotiana benthamiana plants with vectors expressing L1 and L2 via agroinfiltration, and presumptive PsVs were purified. The PsVs contained DNA, and could be successfully used for PBNA with anti-HPV antibodies. This is the first demonstration of the production of mammalian pseudovirions in plants, and the first demonstration of the potential of plants to make DNA vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Pruebas de Neutralización , Nicotiana/virología , Papillomaviridae/inmunología , Vacunas contra Papillomavirus/inmunología , Virión/inmunología , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Plásmidos , Nicotiana/genética , Transfección , Virión/metabolismo
5.
Malar J ; 14: 276, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26174014

RESUMEN

BACKGROUND: Semi-immunity against the malaria parasite is defined by a protection against clinical episodes of malaria and is partially mediated by a repertoire of inhibitory antibodies directed against the blood stage of Plasmodium falciparum, in particular against surface proteins of merozoites, the invasive form of the parasite. Such antibodies may be used for preventive or therapeutic treatment of P. falciparum malaria. Here, the isolation and characterization of novel human monoclonal antibodies (humAbs) for such applications is described. METHODS: B lymphocytes had been selected by flow cytometry for specificity against merozoite surface proteins, including the merozoite surface protein 10 (MSP10). After Epstein-Barr virus (EBV) transformation and identification of promising resulting lymphoblastoid cell lines (LCLs), human immunoglobulin heavy and light chain variable regions (Vh or Vl regions) were secured, cloned into plant expression vectors and transiently produced in Nicotiana benthamiana in the context of human full-size IgG1:κ. The specificity and the affinity of the generated antibodies were assessed by ELISA, dotblot and surface plasmon resonance (SPR) spectroscopy. The growth inhibitory activity was evaluated based on growth inhibition assays (GIAs) using the parasite strain 3D7A. RESULTS: Supernatants from two LCLs, 5E8 and 5F6, showed reactivity against the second (5E8) or first (5F6) epidermal growth factor (EGF)-like domain of MSP10. The isolated V regions were recombinantly expressed in their natural pairing as well as in combination with each other. The resulting recombinant humAbs showed affinities of 9.27 × 10(-7) M [humAb10.1 (H5F6:κ5E8)], 5.46 × 10(-9) M [humAb10.2 (H5F6:κ5F6)] and 4.34 × 10(-9) M [humAb10.3 (H5E8:κ5E8)]. In GIAs, these antibodies exhibited EC50 values of 4.1 mg/ml [95% confidence interval (CI) 2.6-6.6 mg/ml], 6.9 mg/ml (CI 5.5-8.6 mg/ml) and 9.5 mg/ml (CI 5.5-16.4 mg/ml), respectively. CONCLUSION: This report describes a platform for the isolation of human antibodies from semi-immune blood donors by EBV transformation and their subsequent characterization after transient expression in plants. To our knowledge, the presented antibodies are the first humAbs directed against P. falciparum MSP10 to be described. They recognize the EGF-like folds of MSP10 and bind these with high affinity. Moreover, these antibodies inhibit P. falciparum 3D7A growth in vitro.


Asunto(s)
Anticuerpos Monoclonales , Antígenos de Protozoos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Proteínas Recombinantes , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Humanos , Plasmodium falciparum/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...