Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675563

RESUMEN

The purpose of this study was to characterize ethanol extracts from leaves and flowers of two ecotypes (PL-intended for industrial plantations and KC-intended for cut flowers) of Lavandula angustifolia Mill. The plant was cultivated in 2019 in southern Poland as part of a long-term research plan to develop new varieties resistant to difficult environmental conditions. The collected leaves and flowers were used to prepare ethanol extracts, which were then analyzed in terms of phytochemical composition and antioxidant, bactericidal, and fungicidal properties. Using UPLC techniques, 22 compounds belonging to phenolic acids and flavonoids were identified. UPLC test results indicated that ethanol extracts from leaves and flowers differ in phytochemical composition. Lower amounts of phenolic acids and flavonoids were identified in leaf extracts than in flower extracts. The predominant substances in the flower extracts were rosmarinic acid (829.68-1229.33 µg/g), ferulic acid glucoside III (810.97-980.55 µg/g), and ferulic acid glucoside II (789.30-885.06 µg/g). Ferulic acid glucoside II (3981.95-6561.19 µg/g), ferulic acid glucoside I (2349.46-5503.81 µg/g), and ferulic acid glucoside III (1303.84-2774.17 µg/g) contained the highest amounts in the ethanol extracts of the leaves. The following substances were present in the extracts in trace amounts or at low levels: apigenin, kaempferol, and caftaric acid. Leaf extracts of the PL ecotype quantitatively (µg/g) contained more phytochemicals than leaf extracts of the KC ecotype. The results obtained in this study indicate that antioxidant activity depends on the ecotype. Extracts from the PL ecotype have a better ability to eliminate free radicals than extracts from the KC ecotype. At the same time, it was found that the antioxidant activity (total phenolic content, ABTS•+, DPPH•, and FRAP) of PL ecotype leaf extracts was higher (24.49, 177.75, 164.88, and 89.10 µmol (TE)/g) than that determined in flower extracts (15.84, 125.05, 82.35, and 54.64 µmol (TE)/g). The test results confirmed that leaf and flower extracts, even at low concentrations (0.313-0.63%), significantly inhibit the growth of selected Gram-negative and Gram-positive bacteria and Candida yeasts. Inhibition of mold growth was observed at a dose extract of at least 1 mL/100 mL.


Asunto(s)
Antioxidantes , Ecotipo , Flores , Lavandula , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Fitoquímicos/química , Fitoquímicos/farmacología , Lavandula/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Antioxidantes/química , Antioxidantes/farmacología , Flores/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Flavonoides/química , Flavonoides/análisis , Flavonoides/farmacología , Cromatografía Líquida de Alta Presión
2.
Molecules ; 28(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37687245

RESUMEN

Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, morphological part of the plant, and climatic and soil conditions during vegetation. In the presented work, the characterization of antimicrobial properties as well as the qualitative and quantitative assessment of bioactive compounds in the form of polyphenols in ethanol extracts from leaves and flowers of Lavandula angustifolia Mill. intended for border hedges, cultivated in the region of southern Poland, were determined. The composition of the fraction of volatile substances and antioxidant properties were also assessed. The conducted research shows that extracts from leaves and flowers significantly affected the viability of bacterial cells and the development of mold fungi. A clear decrease in the viability of bacteria and C. albicans cells was shown in the concentration of 0.32% of extracts. Leaf extracts were characterized by a much higher content of polyphenols and antioxidant properties than flower extracts. The composition of volatiles measured by GC-MS was significantly different between the extracts. Linalyl acetate and ocimene isomers mix dominated in flower extracts, whereas coumarin, γ-cadinene, and 7-methoxycoumarin were identified as dominant in leaf extracts.


Asunto(s)
Antiinfecciosos , Lavandula , Antioxidantes/farmacología , Polonia , Antiinfecciosos/farmacología , Candida albicans , Extractos Vegetales/farmacología
3.
Membranes (Basel) ; 12(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36363641

RESUMEN

This paper presents the results of research on selected mechanical and physical properties of polyethylene membranes containing 50% of the plant fraction obtained as waste from an edible oil press. The produced biomembranes were characterized by low tensile strength (2.02-4.28 MPa). The addition of plant material will not adversely affect the barrier properties such as water vapor permeability or the contact angle. Additionally, there was a discoloration of the characteristics affecting the shrinkage of the membrane. The presence of the plant component clearly lowered the shrinkage of the material. This research is important and provides valuable knowledge on the possibilities of using plant waste and the direction of the potential application of the materials produced with their use.

4.
Polymers (Basel) ; 14(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631914

RESUMEN

The influence of bacterial cellulose gel film pretreatment methods on the efficiency of enzymatic hydrolysis was investigated. An increase in the efficiency of enzymatic hydrolysis due to liquid hot water pretreatment or steam explosion was shown. The glucose yield of 88% was obtained from raw, non-purified, bacterial cellulose treated at 130 °C. The results confirm the potential of bacterial cellulose gel film as a source for liquid biofuel production.

5.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35012177

RESUMEN

Due to the content of lignocellulosic particles, wood plastic composites (WPC) composites can be attacked by both domestic and mold fungi. Household fungi reduce the mechanical properties of composites, while mold fungi reduce the aesthetics of products by changing their color and surface decomposition of the wood substance. As part of this study, the impact of lignocellulosic fillers in the form of sawdust and bark in poly (lactic acid) (PLA)-based biocomposites on their susceptibility to mold growth was determined. The evaluation of the samples fouled with mold fungi was performed by computer analysis of the image. For comparison, tests were carried out on analogous high-density polyethylene (HDPE) composites. Three levels of composites' filling were used with two degrees of comminution of lignocellulosic fillers and the addition of bonding aids to selected variants. The composites were produced in two stages employing extrusion and flat pressing. The research revealed that PLA composites were characterized by a higher fouling rate by Aspergillus niger Tiegh fungi compared to HDPE composites. In the case of HDPE composites. The type of filler (bark, sawdust) affected this process much more in the case of HDPE composites than for PLA composites. In addition, the use of filler with smaller particles enhanced the fouling process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...