Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microbiology (Reading) ; 169(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37668351

RESUMEN

Complement offers a first line of defence against infection through the opsonization of microbial pathogens, recruitment of professional phagocytes to the infection site and the coordination of inflammatory responses required for the resolution of infection. Staphylococcus aureus is a successful pathogen that has developed multiple mechanisms to thwart host immune responses. Understanding the precise strategies employed by S. aureus to bypass host immunity will be paramount for the development of vaccines and or immunotherapies designed to prevent or limit infection. To gain a better insight into the specific immune evasion mechanisms used by S. aureus we examined the pathogen's interaction with the soluble complement inhibitor, C4b-binding protein (C4BP). Previous studies indicated that S. aureus recruits C4BP using a specific cell-wall-anchored surface protein and that bound C4BP limits complement deposition on the staphylococcal surface. Using flow-cytometric-based bacterial-protein binding assays we observed no interaction between S. aureus and C4BP. Moreover, we offer a precautionary warning that C4BP isolated from plasma can be co-purified with minute quantities of human IgG, which can distort binding analysis between S. aureus and human-derived proteins. Combined our data indicates that recruitment of C4BP is not a complement evasion strategy employed by S. aureus.


Asunto(s)
Proteína de Unión al Complemento C4b , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Proteínas del Sistema Complemento , Staphylococcus , Proteínas de la Membrana
2.
Front Immunol ; 14: 1149822, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283747

RESUMEN

Dysregulated NLRP3 inflammasome activation drives a wide variety of diseases, while endogenous inhibition of this pathway is poorly characterised. The serum protein C4b-binding protein (C4BP) is a well-established inhibitor of complement with emerging functions as an endogenously expressed inhibitor of the NLRP3 inflammasome signalling pathway. Here, we identified that C4BP purified from human plasma is an inhibitor of crystalline- (monosodium urate, MSU) and particulate-induced (silica) NLRP3 inflammasome activation. Using a C4BP mutant panel, we identified that C4BP bound these particles via specific protein domains located on the C4BP α-chain. Plasma-purified C4BP was internalised into MSU- or silica-stimulated human primary macrophages, and inhibited MSU- or silica-induced inflammasome complex assembly and IL-1ß cytokine secretion. While internalised C4BP in MSU or silica-stimulated human macrophages was in close proximity to the inflammasome adaptor protein ASC, C4BP had no direct effect on ASC polymerisation in in vitro assays. C4BP was also protective against MSU- and silica-induced lysosomal membrane damage. We further provide evidence for an anti-inflammatory function for C4BP in vivo, as C4bp-/- mice showed an elevated pro-inflammatory state following intraperitoneal delivery of MSU. Therefore, internalised C4BP is an inhibitor of crystal- or particle-induced inflammasome responses in human primary macrophages, while murine C4BP protects against an enhanced inflammatory state in vivo. Our data suggests C4BP has important functions in retaining tissue homeostasis in both human and mice as an endogenous serum inhibitor of particulate-stimulated inflammasome activation.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Ratones , Proteína de Unión al Complemento C4b/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dióxido de Silicio/farmacología
3.
Front Immunol ; 13: 814193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173727

RESUMEN

Gram-negative bacteria from the genus Acinetobacter are responsible for life-threating hospital-related infections such as pneumonia, septicemia, and meningitis, especially in immunocompromised patients. Worryingly, Acinetobacter have become multi- and extensively drug resistant (MDR/XDR) over the last few decades. The complement system is the first line of defense against microbes, thus it is highly important to increase our understanding of evasion mechanisms used by Acinetobacter spp. Here, we studied clinical isolates of Acinetobacter spp. (n=50), aiming to characterize their recognition by the complement system. Most isolates tested survived 1 h incubation in 30% serum, and only 8 isolates had a lower survival rate, yet none of those isolates were fully killed. Intriguingly, four isolates survived in human whole blood containing all cell component. Their survival was, however, significantly reduced. Flow cytometry analyses revealed that most of the isolates were detected by human IgG and IgM. Interestingly, we could not detect any significant concentration of deposited C1q, despite observing C4b deposition that was abolished in C1q-deficient serum, indicating transient binding of C1q to bacteria. Moreover, several isolates were recognized by MBL, with C4b deposition abolished in MBL-deficient serum. C3b was deposited on most isolates, but this was not, however, seen with respect to C5b and formation of the membrane attack complex (MAC), indicating that many isolates could avoid complement-mediated lysis. India ink staining showed that isolates were capsulated, and capsule thickness varied significantly between isolates. Studies performed on a wild-type strain and capsule mutant strains, demonstrated that the production of a capsular polysaccharide is one mechanism that mediates resistance to complement-mediated bactericidal activity by preventing MAC deposition and lysis. Our data showed that most clinical Acinetobacter spp. isolates are highly serum resistant despite being efficiently recognized by the complement system.


Asunto(s)
Acinetobacter/inmunología , Acinetobacter/fisiología , Actividad Bactericida de la Sangre , Proteínas del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/clasificación , Citometría de Flujo , Humanos , Inmunoglobulina G/metabolismo , Inmunoglobulina M/metabolismo , Unión Proteica
4.
Front Immunol ; 12: 726801, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539665

RESUMEN

Neisseria gonorrhoeae is the etiological agent of gonorrhea, the second most common bacterial sexually transmitted infection worldwide. Reproductive sequelae of gonorrhea include infertility, ectopic pregnancy and chronic pelvic pain. Most antibiotics currently in clinical use have been rendered ineffective due to the rapid spread of antimicrobial resistance among gonococci. The developmental pipeline of new antibiotics is sparse and novel therapeutic approaches are urgently needed. Previously, we utilized the ability of N. gonorrhoeae to bind the complement inhibitor C4b-binding protein (C4BP) to evade killing by human complement to design a chimeric protein that linked the two N-terminal gonococcal binding domains of C4BP with the Fc domain of IgM. The resulting molecule, C4BP-IgM, enhanced complement-mediated killing of gonococci. Here we show that C4BP-IgM induced membrane perturbation through complement deposition and membrane attack complex pore insertion facilitates the access of antibiotics to their intracellular targets. Consequently, bacteria become more susceptible to killing by antibiotics. Remarkably, C4BP-IgM restored susceptibility to azithromycin of two azithromycin-resistant clinical gonococcal strains because of overexpression of the MtrC-MtrD-MtrE efflux pump. Our data show that complement activation can potentiate activity of antibiotics and suggest a role for C4BP-IgM as an adjuvant for antibiotic treatment of drug-resistant gonorrhea.


Asunto(s)
Antibacterianos/farmacología , Activación de Complemento , Proteína de Unión al Complemento C4b/administración & dosificación , Farmacorresistencia Bacteriana/efectos de los fármacos , Inmunoglobulina M/administración & dosificación , Neisseria gonorrhoeae/efectos de los fármacos , Azitromicina/farmacología , Ciprofloxacina/farmacología , Proteína de Unión al Complemento C4b/genética , Humanos , Inmunoglobulina M/genética , Neisseria gonorrhoeae/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/administración & dosificación , Espectinomicina/farmacología
5.
J Immunol ; 207(6): 1566-1577, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34433620

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.


Asunto(s)
Bacteriemia/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteína de Unión al Complemento C4b/metabolismo , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Tonsilitis/inmunología , Anciano , Anciano de 80 o más Años , Bacteriemia/genética , Proteínas de la Membrana Bacteriana Externa/genética , Niño , Proteínas del Sistema Complemento/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/genética , Humanos , Ligandos , Masculino , Persona de Mediana Edad , Organismos Modificados Genéticamente , Unión Proteica/genética , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Proteínas Recombinantes/metabolismo , Transducción de Señal/genética , Tonsilitis/microbiología
6.
Front Immunol ; 11: 2122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983170

RESUMEN

Moraxella catarrhalis is a human-specific commensal of the respiratory tract and an opportunistic pathogen. It is one of the leading cause of otitis media in children and of acute exacerbations in patients with chronic obstructive pulmonary disease, resulting in significant morbidity and economic burden. Vaccines and new immunotherapeutic strategies to treat this emerging pathogen are needed. Complement is a key component of innate immunity that mediates the detection, response, and subsequent elimination of invading pathogens. Many pathogens including M. catarrhalis have evolved complement evasion mechanisms, which include the binding of human complement inhibitors such as C4b-binding protein (C4BP) and Factor H (FH). Inhibiting C4BP and FH acquisition by M. catarrhalis may provide a novel therapeutic avenue to treat infections. To achieve this, we created two chimeric proteins that combined the Moraxella-binding domains of C4BP and FH fused to human immunoglobulin Fcs: C4BP domains 1 and 2 and FH domains 6 and 7 fused to IgM and IgG Fc, respectively. As expected, FH6-7/IgG displaced FH from the bacterial surface while simultaneously activating complement via Fc-C1q interactions, together increasing pathogen elimination. C4BP1-2/IgM also increased serum killing of the bacteria through enhanced complement deposition, but did not displace C4BP from the surface of M. catarrhalis. These Fc fusion proteins could act as anti-infective immunotherapies. Many microbes bind the complement inhibitors C4BP and FH through the same domains as M. catarrhalis, therefore these Fc fusion proteins may be promising candidates as adjunctive therapy against many different drug-resistant pathogens.


Asunto(s)
Proteína de Unión al Complemento C4b/farmacología , Factor H de Complemento/farmacología , Fragmentos Fc de Inmunoglobulinas/farmacología , Moraxella catarrhalis/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Animales , Unión Competitiva , Actividad Bactericida de la Sangre , Células CHO , Complemento C3b/análisis , Complemento C3d/análisis , Proteína de Unión al Complemento C4b/genética , Proteína de Unión al Complemento C4b/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Cricetinae , Cricetulus , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Inmunoglobulina M/genética , Inmunoglobulina M/metabolismo , Inmunoglobulina M/farmacología , Moraxella catarrhalis/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
JCI Insight ; 4(23)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31661468

RESUMEN

Gonorrhea is a sexually transmitted infection with 87 million new cases per year globally. Increasing antibiotic resistance has severely limited treatment options. A mechanism that Neisseria gonorrhoeae uses to evade complement attack is binding of the complement inhibitor C4b-binding protein (C4BP). We screened 107 porin B1a (PorB1a) and 83 PorB1b clinical isolates randomly selected from a Swedish strain collection over the last 10 years and noted that 96/107 (89.7%) PorB1a and 16/83 (19.3%) PorB1b bound C4BP; C4BP binding substantially correlated with the ability to evade complement-dependent killing (r = 0.78). We designed 2 chimeric proteins that fused C4BP domains to the backbone of IgG or IgM (C4BP-IgG; C4BP-IgM) with the aim of enhancing complement activation and killing of gonococci. Both proteins bound gonococci (KD C4BP-IgM = 2.4 nM; KD C4BP-IgG 980.7 nM), but only hexameric C4BP-IgM efficiently outcompeted heptameric C4BP from the bacterial surface, resulting in enhanced complement deposition and bacterial killing. Furthermore, C4BP-IgM substantially attenuated the duration and burden of colonization of 2 C4BP-binding gonococcal isolates but not a non-C4BP-binding strain in a mouse vaginal colonization model using human factor H/C4BP-transgenic mice. Our preclinical data present C4BP-IgM as an adjunct to conventional antimicrobials for the treatment of gonorrhea.


Asunto(s)
Proteína de Unión al Complemento C4b/uso terapéutico , Gonorrea/tratamiento farmacológico , Antígenos de Histocompatibilidad/uso terapéutico , Inmunoglobulina M/uso terapéutico , Neisseria gonorrhoeae/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Gonorrea/inmunología , Humanos , Inmunoglobulina G , Ratones Endogámicos BALB C , Ratones Transgénicos , Porinas , Dominios Proteicos
8.
J Am Soc Nephrol ; 29(1): 283-294, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030465

RESUMEN

Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment.


Asunto(s)
Activación de Complemento , Factor Nefrítico del Complemento 3/metabolismo , Complemento C3/metabolismo , Glomerulonefritis Membranoproliferativa/genética , Glomerulonefritis Membranoproliferativa/inmunología , Enfermedades del Complejo Inmune/complicaciones , Adolescente , Adulto , Algoritmos , Niño , Preescolar , Análisis por Conglomerados , Convertasas de Complemento C3-C5/metabolismo , Femenino , Glomerulonefritis Membranoproliferativa/sangre , Humanos , Enfermedades del Complejo Inmune/sangre , Masculino , Síndrome Nefrótico/inmunología , Adulto Joven
9.
J Immunol ; 199(3): 1021-1040, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28652401

RESUMEN

von Willebrand factor (VWF), a multimeric protein with a central role in hemostasis, has been shown to interact with complement components. However, results are contrasting and inconclusive. By studying 20 patients with congenital thrombotic thrombocytopenic purpura (cTTP) who cannot cleave VWF multimers because of genetic ADAMTS13 deficiency, we investigated the mechanism through which VWF modulates complement and its pathophysiological implications for human diseases. Using assays of ex vivo serum-induced C3 and C5b-9 deposits on endothelial cells, we documented that in cTTP, complement is activated via the alternative pathway (AP) on the cell surface. This abnormality was corrected by restoring ADAMTS13 activity in cTTP serum, which prevented VWF multimer accumulation on endothelial cells, or by an anti-VWF Ab. In mechanistic studies we found that VWF interacts with C3b through its three type A domains and initiates AP activation, although assembly of active C5 convertase and formation of the terminal complement products C5a and C5b-9 occur only on the VWF-A2 domain. Finally, we documented that in the condition of ADAMTS13 deficiency, VWF-mediated formation of terminal complement products, particularly C5a, alters the endothelial antithrombogenic properties and induces microvascular thrombosis in a perfusion system. Altogether, the results demonstrated that VWF provides a platform for the activation of the AP of complement, which profoundly alters the phenotype of microvascular endothelial cells. These findings link hemostasis-thrombosis with the AP of complement and open new therapeutic perspectives in cTTP and in general in thrombotic and inflammatory disorders associated with endothelium perturbation, VWF release, and complement activation.


Asunto(s)
Complemento C3b/metabolismo , Vía Alternativa del Complemento , Células Endoteliales/inmunología , Microvasos/patología , Trombosis/fisiopatología , Factor de von Willebrand/metabolismo , Proteína ADAMTS13/sangre , Proteína ADAMTS13/deficiencia , Proteína ADAMTS13/inmunología , Proteína ADAMTS13/metabolismo , Adolescente , Adulto , Niño , Preescolar , Convertasas de Complemento C3-C5/metabolismo , Complemento C3b/inmunología , Complemento C5a/inmunología , Complemento C5a/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Recién Nacido , Masculino , Microvasos/inmunología , Púrpura Trombocitopénica Trombótica/congénito , Púrpura Trombocitopénica Trombótica/inmunología , Púrpura Trombocitopénica Trombótica/fisiopatología , Trombosis/inmunología , Adulto Joven , Factor de von Willebrand/inmunología
10.
J Biol Chem ; 292(15): 6094, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28411212

RESUMEN

VOLUME 291 (2016) PAGES 8214­8230 This article has been withdrawn by the authors. Lanes 1 and 7 of Fig. 4B were duplicated.

11.
J Biol Chem ; 291(15): 8214-30, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903516

RESUMEN

The activated fragment of C3 (C3b) and factor B form the C3 proconvertase (C3bB), which is cleaved by factor D to C3 convertase (C3bBb). Older studies (Conrad, D. H., Carlo, J. R., and Ruddy, S. (1978)J. Exp. Med.147, 1792-1805; Pangburn, M. K., and Müller-Eberhard, H. J. (1978)Proc. Natl. Acad. Sci. U.S.A.75, 2416-2420; Kazatchkine, M. D., Fearon, D. T., and Austen, K. F. (1979)J. Immunol.122, 75-81) indicated that the complement alternative pathway regulator factor H (FH) competes with factor B for C3b binding; however, the capability of FH to prevent C3bB assembly has not been formally investigated. Moreover, in the few published studies FH did not favor C3bB dissociation. Whether FH may affect C3bBb formation from C3bB is unknown. We set up user-friendly assays based on combined microplate/Western blotting techniques that specifically detect either C3bB or C3bBb, with the aim of investigating the effect of FH on C3bB assembly and decay and C3bBb formation and decay. We document that FH does not affect C3bB assembly, indicating that FH does not efficiently compete with factor B for C3b binding. We also found that FH does not dissociate C3bB. FH showed a strong C3bBb decay-accelerating activity, as reported previously, and also exerted an apparent inhibitory effect on C3bBb formation. The latter effect was not fully attributable to a rapid FH-mediated dissociation of C3bBb complexes, because blocking decay with properdin and C3 nephritic factor did not restore C3bBb formation. FH almost completely prevented release of the smaller cleavage subunit of FB (Ba), without modifying the amount of C3bB complexes, suggesting that FH inhibits the conversion of C3bB to C3bBb. Thus, the inhibitory effect of FH on C3bBb formation is likely the sum of inhibition of C3bB conversion to C3bBb and of C3bBb decay acceleration. Further studies are required to confirm these findings in physiological cell-based settings.


Asunto(s)
C3 Convertasa de la Vía Alternativa del Complemento/inmunología , Convertasas de Complemento C3-C5/inmunología , Factor H de Complemento/inmunología , Complemento C3/inmunología , C3 Convertasa de la Vía Alternativa del Complemento/análisis , Convertasas de Complemento C3-C5/análisis , Complemento C3b/inmunología , Factor B del Complemento/inmunología , Factor H de Complemento/análisis , Ensayo de Inmunoadsorción Enzimática , Humanos , Manganeso/análisis , Manganeso/inmunología , Properdina/inmunología
12.
Mol Immunol ; 71: 131-142, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26895476

RESUMEN

BACKGROUND: Membranoproliferative glomerulonephritis (MPGN) is an uncommon cause of chronic nephropathy recently reclassified into immunoglobulin-associated MPGN (Ig-MPGN) and C3 glomerulopathy (C3G). In this study we aimed: (1) to evaluate the complement genetic and biochemical profile in patients with Ig-MPGN/C3G; (2) to investigate whether genetic variants and different patterns of complement activation (i.e., fluid versus solid phase) correlate with disease manifestations and outcomes. METHODS: In 140 patients with idiopathic Ig-MPGN or C3G we performed complement biochemical and genetic screening and correlated genetic, biochemical and histology data with clinical features. RESULTS: Mutations in genes encoding alternative pathway complement proteins were found in both Ig-MPGN and C3G, and mutations in the two components of the C3 convertase are the most prevalent. We also report a mutation in THBD encoding thrombomodulin in a C3G patient. The presence of mutations alone does not significantly increase the risk of Ig-MPGN or C3G, but it does so when combined with common susceptibility variants (CD46 c.-366A in Ig-MPGN; CFH V62 and THBD A473 in C3G). Finally, patients without complement gene mutations or C3NeFs--autoantibodies that stabilize the alternative pathway C3 convertase--have a higher risk of progressing to end-stage renal disease than patients with identified mutations and/or C3NeFs, suggesting the existence of different pathogenetic mechanisms that lead to renal disease. CONCLUSIONS: We provide new insights into the pathogenesis of Ig-MPGN/C3G that underscore the complex nature of these diseases and suggest that the current C3G classification may miss many cases associated with abnormalities of the complement alternative pathway.


Asunto(s)
Vía Alternativa del Complemento/genética , Variación Genética , Glomerulonefritis Membranoproliferativa/clasificación , Glomerulonefritis Membranoproliferativa/genética , Trombomodulina/genética , Adolescente , Factor Nefrítico del Complemento 3/genética , Femenino , Técnica del Anticuerpo Fluorescente , Predisposición Genética a la Enfermedad , Glomerulonefritis Membranoproliferativa/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulinas , Fallo Renal Crónico/etiología , Masculino , Reacción en Cadena de la Polimerasa Multiplex , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Adulto Joven
13.
Clin J Am Soc Nephrol ; 10(6): 1011-9, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25854283

RESUMEN

BACKGROUND AND OBJECTIVES: Genetic and acquired abnormalities causing dysregulation of the complement alternative pathway contribute to atypical hemolytic uremic syndrome (aHUS), a rare disorder characterized by thrombocytopenia, nonimmune microangiopathic hemolytic anemia, and acute kidney failure. However, in a substantial proportion of patients the disease-associated alterations are still unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Whole-exome and whole-genome sequencing were performed in two unrelated families with infantile recessive aHUS. Sequencing of cDNA from affected individuals was used to test for the presence of aberrant mRNA species. Expression of mutant diacylglycerol kinase epsilon (DGKE) protein was evaluated with western blotting. RESULTS: Whole-exome sequencing analysis with conventional variant filtering parameters did not reveal any obvious candidate mutation in the first family. The report of aHUS-associated mutations in DGKE, encoding DGKE, led to re-examination of the noncoding DGKE variants obtained from next-generation sequencing, allowing identification of a novel intronic DGKE mutation (c.888+40A>G) that segregated with disease. Sequencing of cDNA from affected individuals revealed aberrant forms of DGKE mRNA predicted to cause profound abnormalities in the protein catalytic site. By whole-genome sequencing, the same mutation was found in compound heterozygosity with a second nonsense DGKE mutation in all affected siblings of another unrelated family. Homozygous and compound heterozygous patients presented similar clinical features, including aHUS presentation in the first year of life, multiple relapsing episodes, and proteinuria, which are prototypical of DGKE-associated aHUS. CONCLUSIONS: This is the first report of a mutation located beyond the exon-intron boundaries in aHUS. Intronic mutations such as these are underreported because conventional filtering parameters used to process next-generation sequencing data routinely exclude these regions from downstream analyses in both research and clinical settings. The results suggest that analysis of noncoding regions of aHUS-associated genes coupled with mRNA sequencing might provide a tool to explain genetically unsolved aHUS cases.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Diacilglicerol Quinasa/genética , Intrones , Mutación , Adolescente , Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/enzimología , Secuencia de Bases , Western Blotting , Niño , Análisis Mutacional de ADN , Diacilglicerol Quinasa/metabolismo , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Fenotipo , Valor Predictivo de las Pruebas , Factores de Riesgo
14.
Blood ; 124(11): 1715-26, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25037630

RESUMEN

Atypical hemolytic-uremic syndrome (aHUS) is associated with genetic complement abnormalities/anti-complement factor H antibodies, which paved the way to treatment with eculizumab. We studied 44 aHUS patients and their relatives to (1) test new assays of complement activation, (2) verify whether such abnormality occurs also in unaffected mutation carriers, and (3) search for a tool for eculizumab titration. An abnormal circulating complement profile (low C3, high C5a, or SC5b-9) was found in 47% to 64% of patients, irrespective of disease phase. Acute aHUS serum, but not serum from remission, caused wider C3 and C5b-9 deposits than control serum on unstimulated human microvascular endothelial cells (HMEC-1). In adenosine 5'-diphosphate-activated HMEC-1, also sera from 84% and 100% of patients in remission, and from all unaffected mutation carriers, induced excessive C3 and C5b-9 deposits. At variance, in most patients with C3 glomerulopathies/immune complex-associated membranoproliferative glomerulonephritis, serum-induced endothelial C5b-9 deposits were normal. In 8 eculizumab-treated aHUS patients, C3/SC5b-9 circulating levels did not change posteculizumab, whereas serum-induced endothelial C5b-9 deposits normalized after treatment, paralleled or even preceded remission, and guided drug dosing and timing. These results point to efficient complement inhibition on endothelium for aHUS treatment. C5b-9 endothelial deposits might help monitor eculizumab effectiveness, avoid drug overexposure, and save money considering the extremely high cost of the drug.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Activación de Complemento/efectos de los fármacos , Síndrome Hemolítico-Urémico/sangre , Síndrome Hemolítico-Urémico/tratamiento farmacológico , Monitoreo Fisiológico , Adenosina Difosfato Ribosa/farmacología , Síndrome Hemolítico Urémico Atípico , Complemento C3/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Glomerulonefritis Membranoproliferativa/sangre , Glomerulonefritis Membranoproliferativa/tratamiento farmacológico , Glomerulonefritis Membranoproliferativa/patología , Síndrome Hemolítico-Urémico/patología , Humanos , Masculino , Inducción de Remisión , Factores de Tiempo
15.
J Biomol Screen ; 19(8): 1212-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24916412

RESUMEN

PARP inhibitors are an exciting new class of antineoplastic drugs that have been proven to be efficacious as single agents in cancer settings with inherent DNA repair defects, as well as in combination with DNA-damaging chemotherapeutics. Currently, they are designed to target the catalytic domain of PARP-1, the most studied member of the family, with a key role in the DNA-damage repair process. Because PARP inhibitors are substrate (NAD(+)) competitors, there is a need for a deeper understanding of their cross-reactivity. This is particularly relevant for PARP-2, the PARP-1 closest homologue, for which an embryonic lethal phenotype has been observed in double knockout mice. In this study, we describe the development and validation of binding assays based on fluorescence polarization (FP) and surface plasmon resonance (SPR) techniques. PARP-1, PARP-2, PARP-3, and TNKS-1 FP displacement assays are set up by employing ad hoc synthesized probes. These assays are suitable for high-throughput screening (HTS) and selectivity profiling, thus allowing the identification of NAD(+)binding site selective inhibitors. The PARP-1 and PARP-2 complementary SPR binding assays confirm displacement data and the in-depth inhibitor characterization. Moreover, these formats have the potential to be broadly applicable to other members of the PARP family.


Asunto(s)
Polarización de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Resonancia por Plasmón de Superficie/métodos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Tanquirasas/genética , Tanquirasas/metabolismo
16.
J Am Soc Nephrol ; 25(9): 2053-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24652797

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Síndrome Hemolítico Urémico Atípico/inmunología , Factor B del Complemento/genética , Mutación , Sustitución de Aminoácidos , Sitios de Unión/genética , C3 Convertasa de la Vía Alternativa del Complemento/química , C3 Convertasa de la Vía Alternativa del Complemento/genética , C3 Convertasa de la Vía Alternativa del Complemento/metabolismo , Complemento C3b/metabolismo , C5 Convertasa de la Vía Alternativa del Complemento/química , C5 Convertasa de la Vía Alternativa del Complemento/genética , C5 Convertasa de la Vía Alternativa del Complemento/metabolismo , Factor B del Complemento/química , Factor B del Complemento/metabolismo , Vía Alternativa del Complemento/genética , Simulación por Computador , Frecuencia de los Genes , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ligandos , Modelos Moleculares , Complejos Multiproteicos/química , Polimorfismo Genético , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
N Engl J Med ; 365(4): 295-306, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21756023

RESUMEN

BACKGROUND: Focal segmental glomerulosclerosis is a kidney disease that is manifested as the nephrotic syndrome. It is often resistant to glucocorticoid therapy and progresses to end-stage renal disease in 50 to 70% of patients. Genetic studies have shown that familial focal segmental glomerulosclerosis is a disease of the podocytes, which are major components of the glomerular filtration barrier. However, the molecular cause in over half the cases of primary focal segmental glomerulosclerosis is unknown, and effective treatments have been elusive. METHODS: We performed whole-genome linkage analysis followed by high-throughput sequencing of the positive-linkage area in a family with autosomal recessive focal segmental glomerulosclerosis (index family) and sequenced a newly discovered gene in 52 unrelated patients with focal segmental glomerulosclerosis. Immunohistochemical studies were performed on human kidney-biopsy specimens and cultured podocytes. Expression studies in vitro were performed to characterize the functional consequences of the mutations identified. RESULTS: We identified two mutations (A159P and Y695X) in MYO1E, which encodes a nonmuscle class I myosin, myosin 1E (Myo1E). The mutations in MYO1E segregated with focal segmental glomerulosclerosis in two independent pedigrees (the index family and Family 2). Patients were homozygous for the mutations and did not have a response to glucocorticoid therapy. Electron microscopy showed thickening and disorganization of the glomerular basement membrane. Normal expression of Myo1E was documented in control human kidney-biopsy specimens in vivo and in glomerular podocytes in vitro. Transfection studies revealed abnormal subcellular localization and function of the A159P-Myo1E mutant. The Y695X mutation causes loss of calmodulin binding and of the tail domains of Myo1E. CONCLUSIONS: MYO1E mutations are associated with childhood-onset, glucocorticoid-resistant focal segmental glomerulosclerosis. Our data provide evidence of a role of Myo1E in podocyte function and the consequent integrity of the glomerular filtration barrier.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Mutación , Miosina Tipo I/genética , Edad de Inicio , Animales , Niño , Preescolar , Resistencia a Medicamentos , Femenino , Genes Recesivos , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Glomeruloesclerosis Focal y Segmentaria/patología , Glucocorticoides/uso terapéutico , Humanos , Lactante , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/ultraestructura , Masculino , Ratones , Microscopía Fluorescente , Mutación Missense , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Linaje , Podocitos/metabolismo , Podocitos/ultraestructura , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...