Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Infect Immun ; 92(5): e0044723, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38629841

RESUMEN

Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.


Asunto(s)
Células Epiteliales , Lipoproteínas , Infecciones Neumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas/inmunología , Células Epiteliales/microbiología , Células Epiteliales/inmunología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Nasofaringe/microbiología , Mutación , Adhesión Bacteriana
2.
Nat Commun ; 14(1): 5200, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626025

RESUMEN

Human height is strongly influenced by genetics but the contribution of modifiable epigenetic factors is under-explored, particularly in low and middle-income countries (LMIC). We investigate links between blood DNA methylation and child height in four LMIC cohorts (n = 1927) and identify a robust association at three CpGs in the suppressor of cytokine signaling 3 (SOCS3) gene which replicates in a high-income country cohort (n = 879). SOCS3 methylation (SOCS3m)-height associations are independent of genetic effects. Mendelian randomization analysis confirms a causal effect of SOCS3m on height. In longitudinal analysis, SOCS3m explains a maximum 9.5% of height variance in mid-childhood while the variance explained by height polygenic risk score increases from birth to 21 years. Children's SOCS3m is associated with prenatal maternal folate and socio-economic status. In-vitro characterization confirms a regulatory effect of SOCS3m on gene expression. Our findings suggest epigenetic modifications may play an important role in driving child height in LMIC.


Asunto(s)
Metilación de ADN , Proteínas Supresoras de la Señalización de Citocinas , Femenino , Embarazo , Humanos , Niño , Metilación de ADN/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Epigénesis Genética , Epigenómica , Citocinas , Proteína 3 Supresora de la Señalización de Citocinas/genética
3.
Elife ; 112022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188105

RESUMEN

In humans, DNA methylation marks inherited from gametes are largely erased following fertilisation, prior to construction of the embryonic methylome. Exploiting a natural experiment of seasonal variation including changes in diet and nutritional status in rural Gambia, we analysed three datasets covering two independent child cohorts and identified 259 CpGs showing consistent associations between season of conception (SoC) and DNA methylation. SoC effects were most apparent in early infancy, with evidence of attenuation by mid-childhood. SoC-associated CpGs were enriched for metastable epialleles, parent-of-origin-specific methylation and germline differentially methylated regions, supporting a periconceptional environmental influence. Many SoC-associated CpGs overlapped enhancers or sites of active transcription in H1 embryonic stem cells and fetal tissues. Half were influenced but not determined by measured genetic variants that were independent of SoC. Environmental 'hotspots' providing a record of environmental influence at periconception constitute a valuable resource for investigating epigenetic mechanisms linking early exposures to lifelong health and disease.


Asunto(s)
Metilación de ADN , Epigenoma , Niño , Islas de CpG , Embrión de Mamíferos , Epigénesis Genética , Fertilización , Humanos
4.
Clin Epigenetics ; 14(1): 6, 2022 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-35000590

RESUMEN

BACKGROUND: The prevalence of cardiometabolic disease (CMD) is rising globally, with environmentally induced epigenetic changes suggested to play a role. Few studies have investigated epigenetic associations with CMD risk factors in children from low- and middle-income countries. We sought to identify associations between DNA methylation (DNAm) and CMD risk factors in children from India and The Gambia. RESULTS: Using the Illumina Infinium HumanMethylation 850 K Beadchip array, we interrogated DNAm in 293 Gambian (7-9 years) and 698 Indian (5-7 years) children. We identified differentially methylated CpGs (dmCpGs) associated with systolic blood pressure, fasting insulin, triglycerides and LDL-Cholesterol in the Gambian children; and with insulin sensitivity, insulinogenic index and HDL-Cholesterol in the Indian children. There was no overlap of the dmCpGs between the cohorts. Meta-analysis identified dmCpGs associated with insulin secretion and pulse pressure that were different from cohort-specific dmCpGs. Several differentially methylated regions were associated with diastolic blood pressure, insulin sensitivity and fasting glucose, but these did not overlap with the dmCpGs. We identified significant cis-methQTLs at three LDL-Cholesterol-associated dmCpGs in Gambians; however, methylation did not mediate genotype effects on the CMD outcomes. CONCLUSION: This study identified cardiometabolic biomarkers associated with differential DNAm in Indian and Gambian children. Most associations were cohort specific, potentially reflecting environmental and ethnic differences.


Asunto(s)
Biomarcadores , Factores de Riesgo Cardiometabólico , Metilación de ADN/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Síndrome Metabólico/epidemiología , Síndrome Metabólico/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Gambia/epidemiología , Humanos , India/epidemiología , Masculino , Prevalencia
6.
EBioMedicine ; 73: 103644, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34695658

RESUMEN

BACKGROUND: The specific roles that gut microbiota, known pathogens, and host energy-regulating hormones play in the pathogenesis of non-edematous severe acute malnutrition (marasmus SAM) and moderate acute malnutrition (MAM) during outpatient nutritional rehabilitation are yet to be explored. METHODS: We applied an ensemble of sample-specific (intra- and inter-modality) association networks to gain deeper insights into the pathogenesis of acute malnutrition and its severity among children under 5 years of age in rural Gambia, where marasmus SAM is most prevalent. FINDINGS: Children with marasmus SAM have distinct microbiome characteristics and biologically-relevant multimodal biomarkers not observed among children with moderate acute malnutrition. Marasmus SAM was characterized by lower microbial richness and biomass, significant enrichments in Enterobacteriaceae, altered interactions between specific Enterobacteriaceae and key energy regulating hormones and their receptors. INTERPRETATION: Our findings suggest that marasmus SAM is characterized by the collapse of a complex system with nested interactions and key associations between the gut microbiome, enteric pathogens, and energy regulating hormones.  Further exploration of these systems will help inform innovative preventive and therapeutic interventions. FUNDING: The work was supported by the UK Medical Research Council (MRC; MC-A760-5QX00) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement; Bill and Melinda Gates Foundation (OPP 1066932) and the National Institute of Medical Research (NIMR), UK. This network analysis was supported by NIH U54GH009824 [CLD] and NSF OCE-1558453 [CLD].


Asunto(s)
Metabolismo Energético , Microbioma Gastrointestinal , Hormonas/metabolismo , Interacciones Huésped-Patógeno , Desnutrición Aguda Severa/etiología , Desnutrición Aguda Severa/metabolismo , Biodiversidad , Estudios Transversales , Susceptibilidad a Enfermedades , Enterobacteriaceae/patogenicidad , Heces/microbiología , Gambia/epidemiología , Humanos , Metagenoma , Metagenómica/métodos , Fenotipo , Población Rural , Desnutrición Aguda Severa/diagnóstico , Desnutrición Aguda Severa/epidemiología , Factores de Virulencia
7.
Microbiol Resour Announc ; 10(39): e0071521, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34591678

RESUMEN

Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and bacteremia. Serotype 1 is rarely carried but is commonly associated with invasive pneumococcal disease, and in the African "meningitis belt," it is prone to cause cyclical epidemics. We report the complete genome sequence of S. pneumoniae serotype 1 strain BVJ1JL, isolated in Malawi.

8.
Am J Clin Nutr ; 112(4): 1099-1113, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889533

RESUMEN

BACKGROUND: Maternal nutrition in pregnancy has been linked to offspring health in early and later life, with changes to DNA methylation (DNAm) proposed as a mediating mechanism. OBJECTIVE: We investigated intervention-associated DNAm changes in children whose mothers participated in 2 randomized controlled trials of micronutrient supplementation before and during pregnancy, as part of the EMPHASIS (Epigenetic Mechanisms linking Preconceptional nutrition and Health Assessed in India and sub-Saharan Africa) study (ISRCTN14266771). DESIGN: We conducted epigenome-wide association studies with blood samples from Indian (n = 698) and Gambian (n = 293) children using the Illumina EPIC array and a targeted study of selected loci not on the array. The Indian micronutrient intervention was food based, whereas the Gambian intervention was a micronutrient tablet. RESULTS: We identified 6 differentially methylated CpGs in Gambians [2.5-5.0% reduction in intervention group, all false discovery rate (FDR) <5%], the majority mapping to ESM1, which also represented a strong signal in regional analysis. One CpG passed FDR <5% in the Indian cohort, but overall effect sizes were small (<1%) and did not have the characteristics of a robust signature. We also found strong evidence for enrichment of metastable epialleles among subthreshold signals in the Gambian analysis. This supports the notion that multiple methylation loci are influenced by micronutrient supplementation in the early embryo. CONCLUSIONS: Maternal preconceptional and pregnancy micronutrient supplementation may alter DNAm in children measured at 7-9 y. Multiple factors, including differences between the nature of the intervention, participants, and settings, are likely to have contributed to the lack of replication in the Indian cohort. Potential links to phenotypic outcomes will be explored in the next stage of the EMPHASIS study.


Asunto(s)
Metilación de ADN , Fenómenos Fisiologicos Nutricionales Maternos , Micronutrientes/administración & dosificación , Adulto , Niño , Preescolar , Femenino , Interacción Gen-Ambiente , Humanos , Masculino , Proteínas de Neoplasias/genética , Embarazo , Proteoglicanos/genética , Sitios de Carácter Cuantitativo , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Sci Rep ; 10(1): 9675, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541825

RESUMEN

Early life exposures are important predictors of adult disease risk. Although the underlying mechanisms are largely unknown, telomere maintenance may be involved. This study investigated the relationship between seasonal differences in parental exposures at time of conception and leukocyte telomere length (LTL) in their offspring. LTL was measured in two cohorts of children aged 2 yrs (N = 487) and 7-9 yrs (N = 218). The association between date of conception and LTL was examined using Fourier regression models, adjusted for age, sex, leukocyte cell composition, and other potential confounders. We observed an effect of season in the older children in all models [likelihood ratio test (LRT) χ²2 = 7.1, p = 0.03; fully adjusted model]. LTL was greatest in children conceived in September (in the rainy season), and smallest in those conceived in March (in the dry season), with an effect size (LTL peak-nadir) of 0.60 z-scores. No effect of season was evident in the younger children (LRT χ²2 = 0.87, p = 0.65). The different results obtained for the two cohorts may reflect a delayed effect of season of conception on postnatal telomere maintenance. Alternatively, they may be explained by unmeasured differences in early life exposures, or the increased telomere attrition rate during infancy.


Asunto(s)
Leucocitos/metabolismo , Acortamiento del Telómero , Telómero/metabolismo , Niño , Preescolar , Estudios Transversales , Femenino , Fertilización , Gambia , Humanos , Masculino , Análisis de Regresión , Estaciones del Año
10.
Haematologica ; 104(8): 1542-1553, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30733275

RESUMEN

Iron deficiency and iron deficiency anemia are highly prevalent in low-income countries, especially among young children. Hepcidin is the major regulator of systemic iron homeostasis. It controls dietary iron absorption, dictates whether absorbed iron is made available in circulation for erythropoiesis and other iron-demanding processes, and predicts response to oral iron supplementation. Understanding how hepcidin is itself regulated is therefore important, especially in young children. We investigated how changes in iron-related parameters, inflammation and infection status, seasonality, and growth influenced plasma hepcidin and ferritin concentrations during infancy using longitudinal data from two birth cohorts of infants in rural Gambia (n=114 and n=193). This setting is characterized by extreme seasonality, prevalent childhood anemia, undernutrition, and frequent infection. Plasma was collected from infants at birth and at regular intervals, up to 12 months of age. Hepcidin, ferritin and plasma iron concentrations declined markedly during infancy, with reciprocal increases in soluble transferrin receptor and transferrin concentrations, indicating declining iron stores and increasing tissue iron demand. In cross-sectional analyses at 5 and 12 months of age, we identified expected relationships of hepcidin with iron and inflammatory markers, but also observed significant negative associations between hepcidin and antecedent weight gain. Correspondingly, longitudinal fixed effects modeling demonstrated weight gain to be the most notable dynamic predictor of decreasing hepcidin and ferritin through infancy across both cohorts. Infants who grow rapidly in this setting are at particular risk of depletion of iron stores, but since hepcidin concentrations decrease with weight gain, they may also be the most responsive to oral iron interventions.


Asunto(s)
Ferritinas/sangre , Hepcidinas/sangre , Hierro/sangre , Receptores de Transferrina/sangre , Transferrina/metabolismo , Aumento de Peso , Anemia Ferropénica/sangre , Estudios Transversales , Gambia , Homeostasis , Humanos , Lactante , Recién Nacido , Estudios Longitudinales
11.
Am J Trop Med Hyg ; 97(4): 997-1004, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28820687

RESUMEN

Enteroaggregative Escherichia coli (EAEC) cause acute and persistent diarrhea, mostly in children worldwide. Outbreaks of diarrhea caused by EAEC have been described, including a large outbreak caused by a Shiga toxin expressing strain. This study investigated the association of EAEC virulence factors with diarrhea in children less than 5 years. We characterized 428 EAEC strains isolated from stool samples obtained from moderate-to-severe diarrhea cases (157) and healthy controls (217) children aged 0-59 months recruited over 3 years as part of the Global Enteric Multicenter Study (GEMS) in The Gambia. Four sets of multiplex polymerase chain reaction were applied to detect 21 EAEC-virulence genes from confirmed EAEC strains that target pCVD432 (aatA) and AAIC (aaiC). In addition, Kirby-Bauer disc diffusion antimicrobial susceptibility testing was performed on 88 EAEC strains following Clinical Laboratory Standard Institute guidelines. We observed that the plasmid-encoded enterotoxin [odds ratio (OR): 6.9, 95% confidence interval (CI): 2.06-29.20, P < 0.001], aggregative adherence fimbriae/I fimbriae (aggA) [OR: 2.2, 95% CI: 1.16-4.29, P = 0.008], and hexosyltransferase (capU) [OR: 1.9, 95% CI 1.02-3.51, P = 0.028] were associated with moderate-to-severe diarrhea among children < 12 months old but not in the older age strata (> 12 months). Our data suggest that some EAEC-virulent factors have age-specific associations with moderate-to-severe diarrhea in infants. Furthermore, our study showed that 85% and 72% of EAEC strains tested were resistant to sulphamethoxazole-trimethoprim and ampicillin, respectively. Sulphamethoxazole-trimethoprim and ampicillin are among the first-line antibiotics used for the treatment of diarrhea in The Gambia.


Asunto(s)
Diarrea/microbiología , Infecciones por Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Factores de Virulencia/genética , Factores de Virulencia/aislamiento & purificación , Preescolar , Diarrea/epidemiología , Infecciones por Escherichia coli/epidemiología , Femenino , Gambia/epidemiología , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino
12.
BMC Nutr ; 32017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30820326

RESUMEN

BACKGROUND: Animal studies have shown that nutritional exposures during pregnancy can modify epigenetic marks regulating fetal development and susceptibility to later disease, providing a plausible mechanism to explain the developmental origins of health and disease. Human observational studies have shown that maternal peri-conceptional diet predicts DNA methylation in offspring. However, a causal pathway from maternal diet, through changes in DNA methylation, to later health outcomes has yet to be established. The EMPHASIS study (Epigenetic Mechanisms linking Pre-conceptional nutrition and Health Assessed in India and Sub-Saharan Africa, ISRCTN14266771) will investigate epigenetically mediated links between peri-conceptional nutrition and health-related outcomes in children whose mothers participated in two randomized controlled trials of micronutrient supplementation before and during pregnancy. METHODS: The original trials were the Mumbai Maternal Nutrition Project (MMNP, ISRCTN62811278) in which Indian women were offered a daily snack made from micronutrient-rich foods or low-micronutrient foods (controls), and the Peri-conceptional Multiple Micronutrient Supplementation Trial (PMMST, ISRCTN13687662) in rural Gambia, in which women were offered a daily multiple micronutrient (UNIMMAP) tablet or placebo. In the EMPHASIS study, DNA methylation will be analysed in the children of these women (~1,100 children aged 5-7 y in MMNP and 298 children aged 7-9 y in PMMST). Cohort-specific and cross-cohort effects will be explored. Differences in DNA methylation between allocation groups will be identified using the Illumina Infinium MethylationEPIC array, and by pyrosequencing top hits and selected candidate loci. Associations will be analysed between DNA methylation and health-related phenotypic outcomes, including size at birth, and children's post-natal growth, body composition, skeletal development, cardio-metabolic risk markers (blood pressure, serum lipids, plasma glucose and insulin) and cognitive function. Pathways analysis will be used to test for enrichment of nutrition-sensitive loci in biological pathways. Causal mechanisms for nutrition-methylation-phenotype associations will be explored using Mendelian Randomization. Associations between methylation unrelated to supplementation and phenotypes will also be analysed. CONCLUSION: The study will increase understanding of the epigenetic mechanisms underpinning the long-term impact of maternal nutrition on offspring health. It will potentially lead to better nutritional interventions for mothers preparing for pregnancy, and to identification of early life biomarkers of later disease risk.

13.
Clin Infect Dis ; 61 Suppl 4: S354-62, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26449952

RESUMEN

BACKGROUND: There are large data gaps in the epidemiology of diseases caused by Salmonella enterica in West Africa. Regional surveillance of Salmonella infections is necessary, especially with the emergence and spread of multidrug-resistant clones. METHODS: Data on Salmonella isolated from various clinical specimens from patients from across The Gambia were collected and analyzed retrospectively from 2005 to April 2015. Antibiotic sensitivity testing of Salmonella isolates was performed by disk diffusion method. Serotyping and serogrouping of Salmonella isolates was performed using standard microbiology techniques. RESULTS: Two hundred three Salmonella isolates were isolated from 190 patients: 52% (106/203) from blood and 39% (79/203) from stool specimens. Salmonella was also isolated from urine, aspirates, cerebrospinal fluid, wounds, and abscesses. The prevalence of Salmonella in blood cultures was 0.8% (106/13,905). Of the serotyped salmonellae, 14% (21/152) were Salmonella enterica serovar Typhi, whereas 86% (131/152) were serovars other than Typhi (nontyphoidal Salmonella). Of the 102 typed NTS isolates, 40% (41) were Salmonella enterica serovar Typhimurium, 10% (10) were Salmonella enterica serovar Enteritidis, and 3% (3) were Salmonella enterica serovar Arizonae. Overall, 70% (142/203) of the salmonellae were pansusceptible. Multidrug resistance was found in 4% (9/203) of the isolates, 3 of which were Salmonella Enteritidis. CONCLUSIONS: Salmonellae are associated with a wide spectrum of invasive and noninvasive infections across all ages in The Gambia. There is evidence of multidrug resistance in salmonellae that warrants vigilant monitoring and surveillance.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación , Absceso/microbiología , Adolescente , Adulto , Niño , Preescolar , Farmacorresistencia Bacteriana Múltiple , Monitoreo Epidemiológico , Femenino , Gambia/epidemiología , Humanos , Lactante , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Prevalencia , Estudios Retrospectivos , Salmonella enterica/clasificación , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/aislamiento & purificación , Salmonella typhi/efectos de los fármacos , Salmonella typhi/aislamiento & purificación , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/aislamiento & purificación , Serotipificación , Orina/microbiología , Heridas y Lesiones/microbiología , Adulto Joven
14.
Pediatr Infect Dis J ; 33 Suppl 1: S69-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24343618

RESUMEN

BACKGROUND: Rotavirus is the leading cause of diarrhea in children <5 years of age. In light of the implementation of rotavirus vaccines of limited valency, it is important to characterize the genotypic diversity of circulating rotavirus in sub-Saharan Africa. METHODS: We collected stool samples from children 0-59 months of age who presented at the health centres as cases with moderate-to-severe diarrhea in the Upper River Region of The Gambia. Stool samples were also collected from age, sex and area-matched healthy controls. All stool samples were assayed for rotavirus antigens by enzyme-linked immunosorbent assay and genotyping was done using reverse transcriptase polymerase chain reaction. RESULTS: We enrolled 1029 cases and 1569 controls during the 3-year study period (2008-2010). The detection rate of rotavirus among the cases was 20% (204/1029) and 3% (42/1569) among controls. At least 18 genotypes were found and the predominant genotypes were G2P[6] (28%), G1P[8] (26%) and G1P[10] (10%). The rare identified genotypes (<1%) were G2P[14], G8P[6], G9P[6] and G4P[10]. There was also a strong positive association between rotavirus infection and the dry season (odds ratio: 9.83, 95% confidence interval: 6.18-15.63, P < 0.001). A significant increase in the odds of rotavirus and G1P[8] detection with the use of untreated water and the presence of cats, rodents and cows in the child's residence was also found. CONCLUSION: This study provides important baseline data for the genotypes circulating before vaccine implementation. The wide diversity of genotypes circulating in The Gambia implies the need for vigilant effectiveness surveillance following the implementation of RotaTeq in August 2013.


Asunto(s)
Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Rotavirus/genética , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Preescolar , Diarrea/epidemiología , Diarrea/microbiología , Diarrea/virología , Heces/virología , Femenino , Gambia/epidemiología , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos , Factores de Riesgo , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA