Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 12(4): e0134821, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372705

RESUMEN

Human health is threatened by bacterial infections that are increasingly resistant to multiple drugs. A recently emerged strategy consists of disarming pathogenic bacteria by targeting and blocking their virulence factors. The type VI secretion system (T6SS) is a widespread secretion nanomachine encoded and employed by pathogenic strains to establish their virulence process during host invasion. Given the conservation of T6SS in several human bacterial pathogens, the discovery of an effective broad-spectrum T6SS virulence blocker represents an attractive target for development of antivirulence therapies. Here, we identified and validated a protein-protein interaction interface, TssK-TssG, as a key factor in the assembly of the T6SS baseplate (BP) complex in the pathogen enteroaggregative Escherichia coli (EAEC). In silico and biochemical studies revealed that the determinants of the interface are broadly conserved among pathogenic species, suggesting a role for this interface as a target for T6SS inhibition. Based on the high-resolution structure of the TssKFGE wedge complex, we rationally designed a biomimetic cyclic peptide (BCP) that blocks the assembly of the EAEC BP complex and inhibits the function of T6SS in bacterial cultures. Our BCP is the first compound completely designed from prior structural knowledge with anti-T6SS activity that can be used as a model to target human pathogens. IMPORTANCE New therapeutic options are urgently needed to fight drug-resistant and life-threatening infections. In contrast to antibiotics that inhibit the growth pathways of bacteria, the antivirulence strategy is a promising approach to disarm pathogens by interfering with bacterial virulence factors without exerting evolutionary pressure. The type VI secretion system (T6SS) is used by many pathogens, including members of the antibiotic-resistant ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), to establish their virulence during the invasion of the human host. Although the T6SS is undoubtedly involved in pathogenesis, strategies targeting this virulence factor are crucially lacking. Here, we used a combination of genetics, microbiology, biochemical, biophysics, and bioinformatics approaches to rationally design a biomimetic peptide that interferes with T6SS assembly and functioning. This study represents a novel proof of concept for an antivirulence strategy which aims to interfere with the assembly of the T6SS.


Asunto(s)
Biomimética/métodos , Escherichia coli/metabolismo , Péptidos/síntesis química , Péptidos/metabolismo , Sistemas de Secreción Tipo VI/antagonistas & inhibidores , Sistemas de Secreción Tipo VI/genética , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Humanos , Péptidos/genética , Péptidos/farmacología , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/antagonistas & inhibidores
2.
J Extracell Vesicles ; 10(2): e12039, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33343836

RESUMEN

Exosomes support cell-to-cell communication in physiology and disease, including cancer. We currently lack tools, such as small chemicals, capable of modifying exosome composition and activity in a specific manner. Building on our previous understanding of how syntenin, and its PDZ partner syndecan (SDC), impact on exosome composition we optimized a small chemical compound targeting the PDZ2 domain of syntenin. In vitro , in tests on MCF-7 breast carcinoma cells, this compound is non-toxic and impairs cell proliferation, migration and primary sphere formation. It does not affect the size or the number of secreted particles, yet it decreases the amounts of exosomal syntenin, ALIX and SDC4 while leaving other exosomal markers unaffected. Interestingly, it also blocks the sorting of EpCAM, a bona fide target used for carcinoma exosome immunocapture. Our study highlights the first characterization of a small pharmacological inhibitor of the syntenin-exosomal pathway, of potential interest for exosome research and oncology.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Molécula de Adhesión Celular Epitelial/metabolismo , Exosomas/metabolismo , Dominios PDZ , Bibliotecas de Moléculas Pequeñas/farmacología , Sindecanos/metabolismo , Sinteninas/antagonistas & inhibidores , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Molécula de Adhesión Celular Epitelial/genética , Exosomas/genética , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Dominios y Motivos de Interacción de Proteínas , Sindecanos/genética , Células Tumorales Cultivadas
3.
Cell Death Differ ; 17(11): 1795-804, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20489726

RESUMEN

Persistently hyperphosphorylated Akt contributes to human oncogenesis and resistance to therapy. Triciribine (TCN) phosphate (TCN-P), the active metabolite of the Akt phosphorylation inhibitor TCN, is in clinical trials, but the mechanism by which TCN-P inhibits Akt phosphorylation is unknown. Here we show that in vitro, TCN-P inhibits neither Akt activity nor the phosphorylation of Akt S473 and T308 by mammalian target of rapamycin or phosphoinositide-dependent kinase 1. However, in intact cells, TCN inhibits EGF-stimulated Akt recruitment to the plasma membrane and phosphorylation of Akt. Surface plasmon resonance shows that TCN, but not TCN, binds Akt-derived pleckstrin homology (PH) domain (K(D): 690 nM). Furthermore, nuclear magnetic resonance spectroscopy shows that TCN-P, but not TCN, binds to the PH domain in the vicinity of the PIP3-binding pocket. Finally, constitutively active Akt mutants, Akt1-T308D/S473D and myr-Akt1, but not the transforming mutant Akt1-E17K, are resistant to TCN and rescue from its inhibition of proliferation and induction of apoptosis. Thus, the results of our studies indicate that TCN-P binds to the PH domain of Akt and blocks its recruitment to the membrane, and that the subsequent inhibition of Akt phosphorylation contributes to TCN-P antiproliferative and proapoptotic activities, suggesting that this drug may be beneficial to patients whose tumors express persistently phosphorylated Akt.


Asunto(s)
Acenaftenos/metabolismo , Acenaftenos/farmacología , Membrana Celular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribonucleótidos/metabolismo , Ribonucleótidos/farmacología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Apoptosis , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Técnica del Anticuerpo Fluorescente , Amplificación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/química , Transducción de Señal , Resonancia por Plasmón de Superficie , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA