Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiology ; 307(5): e221843, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37338353

RESUMEN

Background Handcrafted radiomics and deep learning (DL) models individually achieve good performance in lesion classification (benign vs malignant) on contrast-enhanced mammography (CEM) images. Purpose To develop a comprehensive machine learning tool able to fully automatically identify, segment, and classify breast lesions on the basis of CEM images in recall patients. Materials and Methods CEM images and clinical data were retrospectively collected between 2013 and 2018 for 1601 recall patients at Maastricht UMC+ and 283 patients at Gustave Roussy Institute for external validation. Lesions with a known status (malignant or benign) were delineated by a research assistant overseen by an expert breast radiologist. Preprocessed low-energy and recombined images were used to train a DL model for automatic lesion identification, segmentation, and classification. A handcrafted radiomics model was also trained to classify both human- and DL-segmented lesions. Sensitivity for identification and the area under the receiver operating characteristic curve (AUC) for classification were compared between individual and combined models at the image and patient levels. Results After the exclusion of patients without suspicious lesions, the total number of patients included in the training, test, and validation data sets were 850 (mean age, 63 years ± 8 [SD]), 212 (62 years ± 8), and 279 (55 years ± 12), respectively. In the external data set, lesion identification sensitivity was 90% and 99% at the image and patient level, respectively, and the mean Dice coefficient was 0.71 and 0.80 at the image and patient level, respectively. Using manual segmentations, the combined DL and handcrafted radiomics classification model achieved the highest AUC (0.88 [95% CI: 0.86, 0.91]) (P < .05 except compared with DL, handcrafted radiomics, and clinical features model, where P = .90). Using DL-generated segmentations, the combined DL and handcrafted radiomics model showed the highest AUC (0.95 [95% CI: 0.94, 0.96]) (P < .05). Conclusion The DL model accurately identified and delineated suspicious lesions on CEM images, and the combined output of the DL and handcrafted radiomics models achieved good diagnostic performance. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl and Do in this issue.


Asunto(s)
Aprendizaje Profundo , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Mamografía/métodos , Mama/diagnóstico por imagen , Curva ROC
2.
Br J Radiol ; 93(1108): 20190948, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32101448

RESUMEN

Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms "handcrafted and deep," is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.


Asunto(s)
Aprendizaje Profundo/tendencias , Diagnóstico por Imagen/tendencias , Procesamiento de Imagen Asistido por Computador/tendencias , Tecnología Radiológica/tendencias , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Femenino , Predicción , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Radiografía/métodos , Tecnología Radiológica/métodos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...