Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0302195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865325

RESUMEN

Individuals with Alcohol Use Disorder (AUD) typically have comorbid chronic health conditions, including anxiety and depression disorders, increased sleep disruption, and poor nutrition status, along with gut microbial dysbiosis. To better understand the effects of gut dysbiosis previously shown in individuals with AUD, gut microbiome and metabolome were investigated between three cohorts. Two groups of individuals with AUD included treatment-seeking newly abstinent for at least six weeks (AB: N = 10) and non-treatment-seeking currently drinking (CD: N = 9) individuals. The third group was age, gender, and BMI-matched healthy controls (HC: N = 12). Deep phenotyping during two weeks of outpatient National Institutes of Health Clinical Center visits was performed, including clinical, psychological, medical, metabolic, dietary, and experimental assessments. Alpha and beta diversity and differential microbial taxa and metabolite abundance of the gut microbiome were examined across the three groups. Metabolites derived from the lipid super-pathway were identified to be more abundant in the AB group compared to CD and HC groups. The AB individuals appeared to be most clinically different from CD and HC individuals with respect to their gut microbiome and metabolome. These findings highlight the potential long-term effects of chronic alcohol use in individuals with AUD, even during short-term abstinence.


Asunto(s)
Alcoholismo , Microbioma Gastrointestinal , Humanos , Masculino , Femenino , Estudios de Casos y Controles , Alcoholismo/microbiología , Alcoholismo/metabolismo , Adulto , Persona de Mediana Edad , Disbiosis/microbiología , Metaboloma
2.
J Cancer Allied Spec ; 10(1): 579, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38259673

RESUMEN

Introduction: Due to the radiation-sparing effects on salivary gland acini, changes in the composition of the oral microbiome may be a driver for improved outcomes in patients receiving proton radiation, with potentially worse outcomes in patients exposed to photon radiation therapy. To date, a head-to-head comparison of oral microbiome changes at a metagenomic level with longitudinal sampling has yet to be performed in these patient cohorts. Methods and Materials: To comparatively analyze oral microbiome shifts during head and neck radiation therapy, a prospective pilot cohort study was performed at the Maryland Proton Treatment Center and the University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center. A longitudinal metagenomic comparative analysis of oral microbiome shifts was performed at three time points (pre-radiation, during radiation, and immediately post-radiation). Head and neck cancer patients receiving proton radiation (n = 4) were compared to photon radiation (n = 4). Additional control groups included healthy age- and sex-matched controls (n = 5), head and neck cancer patients who never received radiation therapy (n = 8), and patients with oral inflammatory disease (n = 3). Results: Photon therapy patients presented with lower microbial alpha diversity at all timepoints, and there was a trend towards reduced species richness as compared with proton therapy. Healthy controls and proton patients exhibited overall higher and similar diversity. A more dysbiotic state was observed in patients receiving photon therapy as compared to proton therapy, in which oral microbial homeostasis was maintained. Mucositis was observed in 3/4 photon patients and was not observed in any proton patients during radiation therapy. The bacterial de novo pyrimidine biosynthesis pathway and the nitrate reduction V pathway were comparatively higher following photon exposure. These functional changes in bacterial metabolism may suggest that photon exposure produces a more permissive environment for the proliferation of pathogenic bacteria. Conclusion: Oral microbiome dysbiosis in patients receiving photon radiation may be associated with increased mucositis occurrence. Proton radiation therapy for head and neck cancer demonstrates a safer side effect profile in terms of oral complications, oral microbiome dysbiosis, and functional metabolic status.

3.
Antonie Van Leeuwenhoek ; 115(9): 1215-1228, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35920985

RESUMEN

Strain OCN044T was isolated from the homogenised tissue and mucus of an apparently healthy Acropora cytherea coral fragment collected from the western reef terrace of Palmyra Atoll in the Northern Line Islands and was taxonomically evaluated with a polyphasic approach. The morphological and chemotaxonomic properties are consistent with characteristics of the genus Vibrio: Gram-stain-negative rods, oxidase- and catalase-positive, and motile by means of a polar flagellum. Strain OCN044T can be differentiated as a novel subspecies based on 21 differences among chemotaxonomic features (e.g., fatty acids percentages for C12:0 and C18:1 ω7c), enzymatic activities (e.g., DNase and cystine arylamidase), and carbon sources utilized (e.g., L-xylose and D-melezitose) from its nearest genetic relative. Phylogenetic analysis and genomic comparisons show close evolutionary relatedness to Vibrio tetraodonis A511T but the overall genomic relatedness indices identify strain OCN044T as a distinct subspecies. Based on a polyphasic characterisation, differences in genomic and taxonomic data, strain OCN044T represents a novel subspecies of V. tetraodonis A511T, for which the name Vibrio tetraodonis subsp. pristinus subsp. nov. is proposed. The type strain is OCN044T (= LMG 31895T = DSM 111778T).


Asunto(s)
Antozoos , Vibrio , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Microbiome ; 10(1): 61, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414043

RESUMEN

BACKGROUND: Access to antiretroviral therapy (ART) during pregnancy and breastfeeding for mothers with HIV has resulted in fewer children acquiring HIV peri- and postnatally, resulting in an increase in the number of children who are exposed to the virus but are not infected (HEU). HEU infants have an increased likelihood of childhood infections and adverse growth outcomes, as well as increased mortality compared to their HIV-unexposed (HUU) peers. We explored potential differences in the gut microbiota in a cohort of 272 Nigerian infants born to HIV-positive and negative mothers in this study during the first 18 months of life. RESULTS: The taxonomic composition of the maternal vaginal and gut microbiota showed no significant differences based on HIV status, and the composition of the infant gut microbiota at birth was similar between HUU and HEU. Longitudinal taxonomic composition of the infant gut microbiota and weight-for-age z-scores (WAZ) differed depending on access to breast milk. HEU infants displayed overall lower WAZ than HUU infants at all time points. We observed a significantly lower relative abundance of Bifidobacterium in HEU infants at 6 months postpartum. Breast milk composition also differed by time point and HIV infection status. The antiretroviral therapy drugs, lamivudine and nevirapine, as well as kynurenine, were significantly more abundant in the breast milk of mothers with HIV. Levels of tiglyl carnitine (C5) were significantly lower in the breast milk of mothers without HIV. ART drugs in the breast milk of mothers with HIV were associated with a lower relative abundance of Bifidobacterium longum. CONCLUSIONS: Maternal HIV infection was associated with adverse growth outcomes of HEU infants in this study, and these differences persist from birth through at least 18 months, which is a critical window for the development of the immune and central nervous systems. We observed that the relative abundance of Bifidobacterium spp. was significantly lower in the gut microbiota of all HEU infants over the first 6 months postpartum, even if HEU infants were receiving breast milk. Breastfeeding was of benefit in our HEU infant cohort in the first weeks postpartum; however, ART drug metabolites in breast milk were associated with a lower abundance of Bifidobacterium. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH , Complicaciones Infecciosas del Embarazo , Lactancia Materna , Niño , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Lactante , Recién Nacido , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico
5.
Transl Psychiatry ; 11(1): 609, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853299

RESUMEN

A relationship between the gut microbiome and alcohol use disorder has been suggested. Excessive alcohol use produces changes in the fecal microbiome and metabolome in both rodents and humans. Yet, these changes can be observed only in a subgroup of the studied populations, and reversal does not always occur after abstinence. We aimed to analyze fecal microbial composition and function in a translationally relevant baboon model of chronic heavy drinking that also meets binge criteria (drinking too much, too fast, and too often), i.e., alcohol ~1 g/kg and blood alcohol levels (BALs) ≥ 0.08 g/dL in a 2-hour period, daily, for years. We compared three groups of male baboons (Papio anubis): L = Long-term alcohol drinking group (12.1 years); S = Short-term alcohol drinking group (2.7 years); and C = Control group, drinking a non-alcoholic reinforcer (Tang®) (8.2 years). Fecal collection took place during 3 days of Drinking (D), followed by a short period (3 days) of Abstinence (A). Fecal microbial alpha- and beta-diversity were significantly lower in L vs. S and C (p's < 0.05). Members of the commensal families Lachnospiraceae and Prevotellaceae showed a relative decrease, whereas the opportunistic pathogen Streptococcus genus showed a relative increase in L vs. S and C (p's < 0.05). Microbiota-related metabolites of aromatic amino acids, tricarboxylic acid cycle, and pentose increased in L vs. S and C (FDR-corrected p < 0.01), with the latter two suggesting high energy metabolism and enhanced glycolysis in the gut lumen in response to alcohol. Consistent with the long-term alcohol exposure, mucosal damage and oxidative stress markers (N-acetylated amino acids, 2-hydroxybutyrate, and metabolites of the methionine cycle) increased in L vs. S and C (FDR-corrected p < 0.01). Overall, S showed few differences vs. C, possibly due to the long-term, chronic alcohol exposure needed to alter the normal gut microbiota. In the three groups, the fecal microbiome barely differed between conditions D and A, whereas the metabolome shifted in the transition from condition D to A. In conclusion, changes in the fecal microbiome and metabolome occur after significant long-term excessive drinking and are only partially affected by acute forced abstinence from alcohol. These results provide novel information on the relationship between the fecal microbiome and metabolome in a controlled experimental setting and using a unique non-human primate model of chronic excessive alcohol drinking.


Asunto(s)
Microbioma Gastrointestinal , Consumo de Bebidas Alcohólicas , Animales , Heces , Masculino , Metaboloma , Primates
6.
Nutrients ; 13(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34444974

RESUMEN

The administration of broad-spectrum antibiotics is often associated with antibiotic-associated diarrhea (AAD), and impacts gastrointestinal tract homeostasis, as evidenced by the following: (a) an overall reduction in both the numbers and diversity of the gut microbiota, and (b) decreased short-chain fatty acid (SCFA) production. Evidence in humans that probiotics may enhance the recovery of microbiota populations after antibiotic treatment is equivocal, and few studies have addressed if probiotics improve the recovery of microbial metabolic function. Our aim was to determine if Bifidobacterium animalis subsp. lactis BB-12 (BB-12)-containing yogurt could protect against antibiotic-induced fecal SCFA and microbiota composition disruptions. We conducted a randomized, allocation-concealed, controlled trial of amoxicillin/clavulanate administration (days 1-7), in conjunction with either BB-12-containing or control yogurt (days 1-14). We measured the fecal levels of SCFAs and bacterial composition at baseline and days 7, 14, 21, and 30. Forty-two participants were randomly assigned to the BB-12 group, and 20 participants to the control group. Antibiotic treatment suppressed the fecal acetate levels in both the control and probiotic groups. Following the cessation of antibiotics, the fecal acetate levels in the probiotic group increased over the remainder of the study and returned to the baseline levels on day 30 (-1.6% baseline), whereas, in the control group, the acetate levels remained suppressed. Further, antibiotic treatment reduced the Shannon diversity of the gut microbiota, for all the study participants at day 7. The magnitude of this change was larger and more sustained in the control group compared to the probiotic group, which is consistent with the hypothesis that BB-12 enhanced microbiota recovery. There were no significant baseline clinical differences between the two groups. Concurrent administration of amoxicillin/clavulanate and BB-12 yogurt, to healthy subjects, was associated with a significantly smaller decrease in the fecal SCFA levels and a more stable taxonomic profile of the microbiota over time than the control group.


Asunto(s)
Antibacterianos/efectos adversos , Bifidobacterium animalis/metabolismo , Ácidos Grasos Volátiles/metabolismo , Heces , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Probióticos/uso terapéutico , Adolescente , Adulto , Anciano , Colon , Diarrea/etiología , Diarrea/microbiología , Diarrea/prevención & control , Heces/química , Heces/microbiología , Tracto Gastrointestinal/metabolismo , Humanos , Persona de Mediana Edad , Yogur/microbiología , Adulto Joven
7.
Alcohol Alcohol ; 56(5): 605-613, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34155502

RESUMEN

AIMS: We aimed to investigate if differences in gut microbiota diversity and composition are associated with post-operative alcohol intake following bariatric surgery in a rat model. METHODS: Twenty-four female rats were randomized to three treatment groups: sham surgery, vertical sleeve gastrectomy (VSG) or Roux-en-Y gastric bypass (RYGB). Stool was collected pre- and post-operatively and 16S rRNA gene amplification and sequencing was performed. Analysis focused on correlating microbial diversity, type of surgery and alcohol (EtOH) intake. RESULTS: Pre-operative stools samples on regular diet showed similar taxonomic composition and Shannon diversity among the three treatment groups. There was a significant decrease in Shannon diversity and a change in taxonomic composition of the gut microbiota after rats was fed high fat diet. Post-operatively, the RYGB group showed significantly lower taxonomic diversity than the VSG and sham groups, while the VSG and sham groups diversity were not significantly different. Taxonomic composition and function prediction based on PICRUSt analysis showed the RYGB group to be distinct from the VSG and sham groups. Shannon diversity was found to be negatively associated with EtOH intake. CONCLUSIONS: Changes in the taxonomic profile of the gut microbiota following bariatric surgery, particularly RYGB, are associated with increased EtOH intake and may contribute to increased alcohol use disorder risk through the gut-brain-microbiome axis.


Asunto(s)
Cirugía Bariátrica , Etanol/administración & dosificación , Microbioma Gastrointestinal/fisiología , Animales , Femenino , Microbioma Gastrointestinal/genética , Modelos Animales , Datos de Secuencia Molecular , Distribución Aleatoria , Ratas
9.
J Neuroendocrinol ; 31(7): e12663, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30456835

RESUMEN

Ghrelin is a gastric hormone that has been implicated in the neurobiology of alcohol drinking. We have recently developed a ghrelin receptor (growth hormone secretagogue receptor; GHSR) knockout (KO) rat model, which exhibits reduced food consumption and body weight. In addition, recent preliminary work suggests that the gut-microbiome, which appears to interact with the ghrelin system, may modulate alcohol drinking. In the present study, we investigated the effects of GHSR deletion on alcohol consumption utilising GHSR KO and wild-type (WT) rats in three separate alcohol consumption paradigms: (i) operant self-administration (30-minute sessions); (ii) drinking in the dark (DID) (4-hour sessions); and (iii) intermittent access (24-hour sessions). These paradigms model varying degrees of alcohol consumption. Furthermore, we aimed to investigate the gut-microbiome composition of GHSR KO and WT rats before and after alcohol exposure. We found that the GHSR KO rats self-administered significantly less alcohol compared to WT rats in the operant paradigm, and consumed less alcohol than WT in the initial stages of the DID paradigm. No genotype differences were found in the intermittent access test. In addition, we found a significant decrease in gut-microbial diversity after alcohol exposure in both genotypes. Thus, the present results indicate that the ghrelin system may be involved in drinking patterns that result in presumably increased alcohol exposure levels. Furthermore, GHSR may constitute a potential pharmacological target for the reduction of binge-alcohol consumption. The potential functional role of the gut-microbiome in alcohol drinking, as well as interaction with the ghrelin system, is an interesting topic for further investigation.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Receptores de Ghrelina/fisiología , Animales , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/microbiología , Condicionamiento Operante , Comportamiento de Búsqueda de Drogas , Etanol , Microbioma Gastrointestinal/efectos de los fármacos , Técnicas de Inactivación de Genes , Receptores de Ghrelina/genética
10.
Microbiology (Reading) ; 164(10): 1240-1253, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30052176

RESUMEN

Coral diseases contribute to the decline of coral reefs globally and threaten the health and future of coral reef communities. Acute Montipora white syndrome (aMWS) is a tissue loss disease that has led to the mortality of hundreds of Montipora capitata colonies in Kane'ohe Bay, Hawai'i in recent years. This study describes the analysis of coral-associated bacterial communities using high-throughput sequencing generated by the PacBio RSII platform. Samples from three health states of M. capitata (healthy, healthy-diseased and diseased) were collected during an ongoing aMWS outbreak and a non-outbreak period and the bacterial communities were identified to determine whether a shift in community structure had occurred between the two periods. The bacterial communities associated with outbreak and non-outbreak samples were significantly different, and one major driver was a high abundance of operational taxonomic units (OTUs) identified as Escherichia spp. in the outbreak sequences. In silico bacterial source tracking suggested this OTU was likely from sewage contamination of livestock, rather than human, origin. The most abundant coliform OTU was a culturable E. fergusonii isolate, strain OCN300, however, it did not induce disease signs on healthy M. capitata colonies when used in laboratory infection trials. In addition, screening of the sequencing output found that the most abundant OTUs corresponded to previously described M. capitata pathogens. The synergistic combination of known coral pathogens, sewage contaminants and other stressors, such as fluctuating seawater temperatures and bacterial pathogens, have the potential to escalate the deterioration of coral reef ecosystems.


Asunto(s)
Antozoos/microbiología , Arrecifes de Coral , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , ADN Bacteriano/genética , Hawaii , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/química , Agua de Mar/microbiología , Análisis de Secuencia de ADN
11.
J Bacteriol ; 200(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29784882

RESUMEN

Multicellular organisms must carefully regulate the timing, number, and location of specialized cellular development. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are interspersed between vegetative cells in a periodic pattern to achieve an optimal exchange of bioavailable nitrogen and reduced carbon. The spacing between heterocysts is regulated by the activity of two developmental inhibitors, PatS and HetN. PatS functions to create a de novo pattern from a homogenous field of undifferentiated cells, while HetN maintains the pattern throughout subsequent growth. Both PatS and HetN harbor the peptide motif ERGSGR, which is sufficient to inhibit development. While the small size of PatS makes the interpretation of inhibitory domains relatively simple, HetN is a 287-amino-acid protein with multiple functional regions. Previous work suggested the possibility of a truncated form of HetN containing the ERGSGR motif as the source of the HetN-derived inhibitory signal. In this work, we present evidence that the glutamate of the ERGSGR motif is required for proper HetN inhibition of heterocysts. Mutational analysis and subcellular localization indicate that the gene encoding HetN uses two methionine start codons (M1 and M119) to encode two protein forms: M1 is required for protein localization, while M119 is primarily responsible for inhibitory function. Finally, we demonstrate that patS and hetN are not functionally equivalent when expressed from the other gene's regulatory sequences. Taken together, these results help clarify the functional forms of HetN and will help refine future work defining a HetN-derived inhibitory signal in this model of one-dimensional periodic patterning.IMPORTANCE The proper placement of different cell types during a developmental program requires the creation and maintenance of a biological pattern to define the cells that will differentiate. Here we show that the HetN inhibitor, responsible for pattern maintenance of specialized nitrogen-fixing heterocyst cells in the filamentous cyanobacterium Anabaena, may be produced from two different start methionine codons. This work demonstrates that the two start sites are individually involved in a different HetN function, either membrane localization or inhibition of cellular differentiation.


Asunto(s)
Anabaena/genética , Anabaena/fisiología , Proteínas Bacterianas/genética , Codón Iniciador , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Análisis Mutacional de ADN , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Fenotipo , Transporte de Proteínas
12.
PLoS One ; 12(11): e0188319, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145488

RESUMEN

Reports of mass coral mortality from disease have increased over the last two decades. Montipora white syndrome (MWS) is a tissue loss disease that has negatively impacted populations of the coral Montipora capitata in Kane'ohe Bay, Hawai'i. Two types of MWS have been documented; a progressive disease termed chronic MWS (cMWS), that can be caused by Vibrio owensii strain OCN002, and a comparatively faster disease termed acute MWS (aMWS), that can be caused by Vibrio coralliilyticus strain OCN008. M. capitata colonies exhibiting cMWS can spontaneously switch to aMWS in the field. In this study, a novel Pseudoalteromonas species, P. piratica strain OCN003, fulfilled Koch's postulates of disease causation as another etiological agent of aMWS. Additionally, OCN003 induced a switch from cMWS to aMWS on M. capitata in laboratory infection trials. A comparison of OCN003 and Vibrio coralliilyticus strain OCN008, showed that OCN003 was more effective at inducing the cMWS to aMWS switch in M. capitata than OCN008. This study is the first to demonstrate that similar disease signs on one coral species (aMWS on M. capitata) can be caused by multiple pathogens, and describes the first Pseudoalteromonas species that infects coral.


Asunto(s)
Antozoos/microbiología , Pseudoalteromonas/fisiología , Animales
13.
Int J Syst Evol Microbiol ; 67(8): 2683-2688, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28792373

RESUMEN

A Gram-stain-negative, motile, rod-shaped bacterium designated OCN003T was cultivated from mucus taken from a diseased colony of the coral Montipora capitata in Kane'ohe Bay, O'ahu, Hawai'i. Colonies of OCN003T were pale yellow, 1-3 mm in diameter, convex, smooth and entire. The strain was heterotrophic, strictly aerobic and strictly halophilic. Cells of OCN003T produced buds on peritrichous prosthecae. Growth occurred within the pH range of 5.5 to 10, and the temperature range of 14 to 39 °C. Major fatty acids were 16 : 1ω7c, 16 : 0, 18 : 1ω7c, 17 : 1ω8c, 12 : 0 3-OH and 17 : 0. Phylogenetic analysis of 1399 nucleotides of the 16S rRNA gene nucleotide sequence and a multi-locus sequence analysis of three genes placed OCN003T in the genus Pseudoalteromonas and indicated that the nearest relatives described are Pseudoalteromonas spongiae, P. luteoviolacea, P. ruthenica and P. phenolica(97-99 % sequence identity). The DNA G+C content of the strain's genome was 40.0 mol%. Based on in silico DNA-DNA hybridization and phenotypic differences from related type strains, we propose that OCN003T represents the type strain of a novel species in the genus Pseudoalteromonas, proposed as Pseudoalteromonas piratica sp. nov. OCN003T (=CCOS1042T=CIP 111189T). An emended description of the genus Pseudoalteromonas is presented.


Asunto(s)
Antozoos/microbiología , Filogenia , Pseudoalteromonas/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hawaii , Procesos Heterotróficos , Hibridación de Ácido Nucleico , Pigmentación , Pseudoalteromonas/genética , Pseudoalteromonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN
14.
Dis Aquat Organ ; 123(2): 173-179, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262637

RESUMEN

Coral colonies in Kane'ohe Bay, Hawai'i (USA), are afflicted with the tissue loss disease chronic Montipora white syndrome (cMWS). Here we show that removal of chronic disease lesions is a potential method to slow the progression of cMWS in M. capitata. Over the 24 wk observation period, treatment colonies lost almost half the amount of tissue that was lost by control colonies. The percentage of tissue loss at each sampling interval (mean ± SEM; treatment: 1.17 ± 0.47%, control: 2.25 ± 0.63%) and the rate of tissue loss per day (treatment: 0.13 ± 0.04%, control: 0.27 ± 0.08%) were both significantly lower on treated colonies than control colonies. While lesion removal stopped tissue loss at the initial infection site, which allowed colony healing, it did not prevent re-infection; in all but one of the treated colonies, new cMWS lesions appeared in other areas of the colony but not around the treatment margins. Additionally, the rate of new infections was similar between treatment and control colonies, indicating that physical injury from lesion removal did not appear to increase cMWS susceptibility. These results indicate that lesion removal reduced morbidity in M. capitata exhibiting cMWS but did not stop the disease.


Asunto(s)
Antozoos , Animales , Bahías , Arrecifes de Coral , Hawaii , Interacciones Huésped-Patógeno , Factores de Tiempo
15.
Environ Microbiol ; 18(11): 4055-4067, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27348808

RESUMEN

Thermal stress increases the incidence of coral disease, which is predicted to become more common with climate change, even on pristine reefs such as those surrounding Palmyra Atoll in the Northern Line Islands that experience minimal anthropogenic stress. Here we describe a strain of Vibrio coralliilyticus, OCN014, which was isolated from Acropora cytherea during an outbreak of Acropora white syndrome (AWS), a tissue loss disease that infected 25% of the A. cytherea population at Palmyra Atoll in 2009. OCN014 recreated signs of disease in experimentally infected corals in a temperature-dependent manner. Genes in OCN014 with expression levels positively correlated with temperature were identified using a transposon-mediated genetic screen. Mutant strains harbouring transposon insertions in two such genes, toxR (a toxin regulator) and mshA (the 11th gene of the 16-gene mannose-sensitive hemagglutinin (MSHA) type IV pilus operon), had reduced infectivity of A. cytherea. Deletion of toxR and the MSHA operon in a second strain of V. coralliilyticus, OCN008, that induces acute Montipora white syndrome in a temperature-independent manner had similarly reduced virulence. This work provides a link between temperature-dependent expression of virulence factors in a pathogen and infection of its coral host.


Asunto(s)
Antozoos/microbiología , Proteínas Bacterianas/genética , Mutación , Vibrio cholerae/metabolismo , Vibrio/fisiología , Animales , Proteínas Bacterianas/metabolismo , Cambio Climático , Fimbrias Bacterianas , Operón , Temperatura , Vibrio/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
PLoS One ; 10(3): e0120853, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774800

RESUMEN

A high number of coral colonies, Montipora spp., with progressive tissue loss were reported from the north shore of Kaua'i by a member of the Eyes of the Reef volunteer reporting network. The disease has a distinct lesion (semi-circular pattern of tissue loss with an adjacent dark band) that was first observed in Hanalei Bay, Kaua'i in 2004. The disease, initially termed Montipora banded tissue loss, appeared grossly similar to black band disease (BBD), which affects corals worldwide. Following the initial report, a rapid response was initiated as outlined in Hawai'i's rapid response contingency plan to determine outbreak status and investigate the disease. Our study identified the three dominant bacterial constituents indicative of BBD (filamentous cyanobacteria, sulfate-reducing bacteria, sulfide-oxidizing bacteria) in coral disease lesions from Kaua'i, which provided the first evidence of BBD in the Hawaiian archipelago. A rapid survey at the alleged outbreak site found disease to affect 6-7% of the montiporids, which is higher than a prior prevalence of less than 1% measured on Kaua'i in 2004, indicative of an epizootic. Tagged colonies with BBD had an average rate of tissue loss of 5.7 cm2/day over a two-month period. Treatment of diseased colonies with a double band of marine epoxy, mixed with chlorine powder, effectively reduced colony mortality. Within two months, treated colonies lost an average of 30% less tissue compared to untreated controls.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/microbiología , Antozoos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/patogenicidad , Cianobacterias/clasificación , Cianobacterias/genética , Cianobacterias/metabolismo , Cianobacterias/patogenicidad , Brotes de Enfermedades , Datos de Secuencia Molecular , Filogenia , Prevalencia , ARN Ribosómico 16S , Sulfatos/metabolismo , Virulencia
17.
Genome Announc ; 3(1)2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25593253

RESUMEN

Pseudoalteromonas sp. strain OCN003 is a marine gammaproteobacterium that was isolated from a diseased colony of the common Hawaiian reef coral, Montipora capitata, found on a reef surrounding Moku o Lo'e in Kane'ohe Bay, Hawaii. Here, we report the complete genome of Pseudoalteromonas sp. strain OCN003.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA