Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796076

RESUMEN

The baculovirus Autographa californica multiple nucleopolyhedrovirus is an insect virus with a circular double-stranded DNA genome, which, among other multiple biotechnological applications, is used as an expression vector for gene delivery in mammalian cells. Nevertheless, the nonspecific immune response triggered by viral vectors often suppresses transgene expression. To understand the mechanisms involved in that response, in the present study, we studied the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway by using two approaches: the genetic edition through CRISPR/Cas9 technology of genes encoding STING or cGAS in NIH/3T3 murine fibroblasts and the infection of HEK293 and HEK293 T human epithelial cells, deficient in cGAS and in cGAS and STING expression, respectively. Overall, our results suggest the existence of two different pathways involved in the establishment of the antiviral response, both dependent on STING expression. Particularly, the cGAS-STING pathway resulted in the more relevant production of beta interferon (IFN-ß) and IFN-λ1 in response to baculovirus infection. In human epithelial cells, IFN-λ1 production was also induced in a cGAS-independent and DNA-protein kinase (DNA-PK)-dependent manner. Finally, we demonstrated that these cellular responses toward baculovirus infection affect the efficiency of transduction of baculovirus vectors.IMPORTANCE Baculoviruses are nonpathogenic viruses that infect mammals, which, among other applications, are used as vehicles for gene delivery. Here, we demonstrated that the cytosolic DNA sensor cGAS recognizes baculoviral DNA and that the cGAS-STING axis is primarily responsible for the attenuation of transduction in human and mouse cell lines through type I and type III IFNs. Furthermore, we identified DNA-dependent protein kinase (DNA-PK) as a cGAS-independent and alternative DNA cytosolic sensor that contributes less to the antiviral state in baculovirus infection in human epithelial cells than cGAS. Knowledge of the pathways involved in the response of mammalian cells to baculovirus infection will improve the use of this vector as a tool for gene therapy.


Asunto(s)
Baculoviridae/genética , Interferón beta/genética , Interferones/genética , Interleucinas/genética , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Animales , Baculoviridae/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , ADN Viral/genética , ADN Viral/inmunología , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Regulación de la Expresión Génica , Células HEK293 , Especificidad del Huésped , Humanos , Interferón beta/inmunología , Interferones/inmunología , Interleucinas/inmunología , Proteínas de la Membrana/inmunología , Ratones , Células 3T3 NIH , Nucleotidiltransferasas/inmunología , Células Sf9 , Transducción de Señal , Spodoptera , Transducción Genética
2.
Theriogenology ; 148: 140-148, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32171973

RESUMEN

The molecule Dimethyl sulfoxide is widely used as drug solvent. However, its antioxidant property was poorly explored. In this study, we evaluated the effect of DMSO supplementation during oocyte in vitro maturation (IVM) on embryo development and quality. Bovine oocytes were matured with different DMSO concentrations (0, 0.1, 0.25, 0.5, 0.75, 1 and 10% v:v) followed by in vitro fertilization. Subsequently, quality indicators such as gene expression of SOX2, OCT4, CDX2, SOD1, oocyte and embryo redox status and DNA damage were evaluated. Polar body extrusion and blastocyst rates increased with 0.5% v:v DMSO. Moreover, first polar body extrusion and blastocyst rates did not increase with 1%, and 10% of DMSO reduced polar body extrusion and did not produce blastocyst. Optimal concentration of DMSO for the use on the maturation was estimated at around 0.45% v:v. Supplementation with 0.5% v:v DMSO has not affected mRNA abundance of genes key in blastocyst, however 0.75% increased gene expression of OCT4 and SOX2. Oocytes matured with 0.5% v:v DMSO and blastocyst from DMSO group showed reduced lipid peroxidation respect control. Total Glutathione concentrations increased in blastocyst stage in DMSO group. DMSO increased the total cell number of blastocysts but not TUNEL positive cells. In conclusion, our results suggest that low DMSO concentrations used during bovine oocytes in vitro maturation increases the maturation, as well as the blastocyst rate and its quality, without demonstrating deleterious effect on embryo cells.


Asunto(s)
Blastocisto/fisiología , Bovinos , Dimetilsulfóxido/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/efectos de los fármacos , Animales , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Medios de Cultivo , Dimetilsulfóxido/administración & dosificación , Relación Dosis-Respuesta a Droga , Técnicas de Cultivo de Embriones/veterinaria , Fertilización In Vitro/veterinaria , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Peroxidación de Lípido , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
3.
Theriogenology ; 117: 26-33, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29807255

RESUMEN

In contrast to other species, intracytoplasmic sperm injection (ICSI) in bovine remains inefficient, resulting in low embryo developmental rates. It is unclear whether such inefficiency is due to the poor response of bovine ooplasms to the injection stimulus, or to the inability of bull sperm to induce oocyte activation. In order to facilitate these events, two strategies were assessed: the use of high concentration of cysteamine [Cys] during IVM; and the selection of sperm attached to cumulus cells after incubation with COCs for ICSI. First, COCs were IVM with increasing [Cys] and subjected to IVF. Zygotes from all groups were cultured under different O2 tensions and development to blastocyst was evaluated. In a second experiment, sperm were co-cultured for 3 h with COCs and acrosome reaction was studied. Afterwards, the best IVM and IVC conditions determined on Experiment 1 were used for ICSI assay. COCs were matured for 21 h with 1 (Cys 1) or 0.1 mM Cys (Cys 0.1 groups, standard condition). In addition, COCs were incubated for ≥3 h with 16 × 106 sperm/ml and only sperm attached to cumulus cells were selected for ICSI (ICSI + Co-cult groups). After chemical activation, embryos were cultured in SOF medium under low O2 tension. Cleavage and blastocyst rates were evaluated at days 2 and 7 of IVC, respectively. Finally, the relative expression of eight genes indicators of embryo quality was compared between ICSI and IVF control blastocysts by qPCR. Cleavage rates were higher for Cys 0.1 ICSI + Co-cult and Cys 1 ICSI + Co-cult groups (n = 117, 92% and n = 116, 79%, respectively) compared to their controls (n = 132, 60% for Cys 0.1 ICSI and n = 108, 52% for Cys 1 ICSI) (p ≤ 0.05). Interestingly, the combined treatment (Cys 1 ICSI + Co-cult) showed higher blastocyst rates than all other ICSI groups (23 vs. 11, 18 and 14% for Cys 0.1 ICSI + Co-cult, Cys 1 ICSI, and Cys 0.1 ICSI, respectively) (p ≤ 0.05). Moreover, incubation with COCs increased the rates of live acrosome reacted sperm (p ≤ 0.05). The relative abundance of mRNAs coding for INFτ, CAT, DNMT1, OCT4, and HDAC3 did not differ between treatments (p ≤ 0.05). SOD2, HADC1 and HADC2 expression was higher for Cys 0.1 ICSI than for IVF embryos (p ≤ 0.05). Group Cys 1 ICSI did not differ from IVF for those three genes, neither did Cys 1 ICSI + Co-cult, except for HDAC1 (p ≤ 0.05). In conclusion, the use of 1 mM Cys during IVM and of sperm incubated with mature COCs might be a good strategy to improve ICSI outcomes in cattle.


Asunto(s)
Bovinos/embriología , Desarrollo Embrionario/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Acrosoma/efectos de los fármacos , Acrosoma/fisiología , Acrosoma/ultraestructura , Animales , Técnicas de Cocultivo , Células del Cúmulo , Cisteamina/farmacología , Femenino , Técnicas de Maduración In Vitro de los Oocitos/métodos , Masculino , Oocitos/crecimiento & desarrollo , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Espermatozoides/fisiología , Espermatozoides/ultraestructura
4.
Theriogenology ; 93: 62-70, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28257868

RESUMEN

In bovine, intracytoplasmic sperm injection (ICSI) remains inefficient partially due to low levels of sperm decondensation. The aim of this study was to determine whether the injection of normal size sperm pretreated with heparin (Hep) and l-glutathione (GSH), the use of sex-sorted sperm, the double round of sperm freezing/thawing (re frozen), or the combination of these approaches can improve sperm decondensation and embryo development after ICSI in cattle. Cleavage and blastocyst rates were evaluated on days 2 and 7 post ICSI. Quality of ICSI blastocysts was analyzed by the relative expression of four genes by qPCR and the DNA fragmentation index by TUNEL assay. For all assays, semen samples were co-incubated with pCX-EGFP 50 ng/µl before ICSI. GFP expression, which can be detected by fluorescence microscopy, was used as a tool to estimate the success of sperm decondensation after ICSI. The use of normal size sperm pretreated with 80 µM Hep-15 mM GSH for 20 h (Hep-GSH) increased cleavage, blastocyst and EGFP + blastocysts rates (60.8, 19.4 and 61.9%) compared to control ICSI (35, 4.9 and 20%) (p < 0.05). Moreover, HMGN1, GLUT5, AQP3 and POU5F1 transcription levels did not differ between ICSI Hep-GSH and IVF embryos. The use of sex-sorted sperm (X, Y) improved cleavage rates and EGFP expression at day 4 (83 and 30.2% for ICSI Y and 83.2 and 31.7% for ICSI X) compared to non-sorted group (50.9 and 15.1%), not showing differences at the blastocyst stage. Finally, sex sorting (X) was combined with Hep-GSH and/or re frozen treatments. The use of Hep-GSH diminished cleavage rates from ICSI X re frozen group (80.4% vs. 94.2%) and blastocyst development from ICSI X group (3.3% vs. 10%), compared with their controls (p < 0.05). While Hep-GSH pretreatment induced lower transgene expression at day 4, no differences were found at the blastocyst stage between ICSI groups (from 58.3 to 80%). TUNEL assay showed higher DNA fragmentation indexes for all ICSI treatments (p < 0.05), except for ICSI X Hep-GSH, which did not differ from IVF X control. In conclusion, the use of normal size sperm pretreated with Hep-GSH, combined or not with sex-sorting by flow cytometry could improve ICSI outcomes in cattle.


Asunto(s)
Bovinos , Separación Celular/veterinaria , Glutatión/farmacología , Heparina/farmacología , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Espermatozoides/efectos de los fármacos , Animales , Blastocisto/fisiología , Separación Celular/métodos , Criopreservación/veterinaria , Fragmentación del ADN , Femenino , Citometría de Flujo/veterinaria , Etiquetado Corte-Fin in Situ , Masculino , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Análisis para Determinación del Sexo , Espermatozoides/fisiología
5.
PLoS One ; 9(11): e110998, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25396418

RESUMEN

Embryo aggregation has been demonstrated to improve cloning efficiency in mammals. However, since no more than three embryos have been used for aggregation, the effect of using a larger number of cloned zygotes is unknown. Therefore, the goal of the present study was to determine whether increased numbers of cloned aggregated zygotes results in improved in vitro and in vivo embryo development in the equine. Zona-free reconstructed embryos (ZFRE's) were cultured in the well of the well system in four different experimental groups: I. 1x, only one ZFRE per microwell; II. 3x, three per microwell; III. 4x, four per microwell; and IV. 5x, five ZFRE's per microwell. Embryo size was measured on day 7, after which blastocysts from each experimental group were either a) maintained in culture from day 8 until day 16 to follow their growth rates, b) fixed to measure DNA fragmentation using the TUNEL assay, or c) transferred to synchronized mares. A higher blastocyst rate was observed on day 7 in the 4x group than in the 5x group. Non-aggregated embryos were smaller on day 8 compared to those aggregated, but from then on the in vitro growth was not different among experimental groups. Apoptotic cells averaged 10% of total cells of day 8 blastocysts, independently of embryo aggregation. Only pregnancies resulting from the aggregation of up to four embryos per microwell went beyond the fifth month of gestation, and two of these pregnancies, derived from experimental groups 3x and 4x, resulted in live cloned foals. In summary, we showed that the in vitro and in vivo development of cloned zona-free embryos improved until the aggregation of four zygotes and declined when five reconstructed zygotes were aggregated.


Asunto(s)
Clonación de Organismos/métodos , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Caballos/embriología , Cigoto/crecimiento & desarrollo , Animales , Blastocisto/citología , Fragmentación del ADN , Técnicas de Cultivo de Embriones , Etiquetado Corte-Fin in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...