Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 53(2): 831-843, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35079978

RESUMEN

In order to find a sustainable and low-cost alternative route to the traditional recovery of aluminum, the filamentous fungus Penicillium simplicissimum was evaluated for aluminum recovery from low-grade bauxite ore. The oat-agar medium was carefully chosen as the foremost solid medium for fungal sporulation due to lower cost, ease in preparation, and high spore production in a short incubation time. To examine the acid production capability in submerged fermentation, P. simplicissimum was inoculated in a medium augmented with glucose and molasses as an energy source. High-performance liquid chromatography (HPLC) technique was used for the determination of the produced organic acids. Three different bioleaching approaches were evaluated using 1% bauxite pulp density. The culture containing P. simplicissimum spores grown in a medium supplemented with molasses leached 86.6% Al in the direct two steps on the fifth day, 56.5% in the direct one step on the fourth day, and 71.7% in the indirect bioleaching on the fourth day, while in the controlled sterile flasks, Al leaching was almost negligible. A maximal amount of Al was leached by the fungal strains using low-cost molasses as a substrate.


Asunto(s)
Óxido de Aluminio , Melaza , Ácidos , Aluminio , Medios de Cultivo/química , Fermentación , Hongos
2.
PLoS One ; 16(11): e0259315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34727135

RESUMEN

Biosorption has been considered a promising technology for the treatment of industrial effluents containing heavy metals. However, the development of a cost-effective technique for biomass immobilization is essential for successful application of biosorption in industrial processes. In this study, a new method of reversible encapsulation of the highly pigmented biomass from Aspergillus nidulans mutant using semipermeable cellulose membrane was developed and the efficiency of the encapsulated biosorbent in the removal and recovery of copper ions was evaluated. Data analysis showed that the pseudo-second-order model better described copper adsorption by encapsulated biosorbent and a good correlation (r2 > 0.96) to the Langmuir isotherm was obtained. The maximum biosorption capacities for the encapsulated biosorbents were higher (333.5 and 116.1 mg g-1 for EB10 and EB30, respectively) than that for free biomass (92.0 mg g-1). SEM-EDXS and FT-IR analysis revealed that several functional groups on fungal biomass were involved in copper adsorption through ion-exchange mechanism. Sorption/desorption experiments showed that the metal recovery efficiency by encapsulated biosorbent remained constant at approximately 70% during five biosorption/desorption cycles. Therefore, this study demonstrated that the new encapsulation method of the fungal biomass using a semipermeable cellulose membrane is efficient for heavy metal ion removal and recovery from aqueous solutions in multiple adsorption-desorption cycles. In addition, this reversible encapsulation method has great potential for application in the treatment of heavy metal contaminated industrial effluents due to its low cost, the possibility of recovering adsorbed ions and the reuse of biosorbent in consecutive biosorption/desorption cycles with high efficiency of metal removal and recovery.


Asunto(s)
Aspergillus nidulans , Biomasa , Cobre , Metales Pesados
3.
J Hazard Mater ; 403: 123622, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264855

RESUMEN

Four down-flow structured bed bioreactors were operated targeting biological sulfate-reduction and metal recovery. Three different electron donors were tested: glycerol (R1), lactate (R2), sucrose (R3), and a blend of the previous three (R4) with an increasing copper influent load (5, 15, and 30 mg Cu2+.L-1). Copper inhibited sulfate-reduction in R1 (15 mg Cu2+.L-1) and R3 (5 mg Cu2+.L-1), but the fermentative activity was not affected. R2 and R4 were not inhibited by the copper influent concentration. R2 provided the highest sulfate reduction rate (1767.3 ± 240.1 mg SO42-.L.day-1). Nonetheless, the accumulation of settling precipitates was 22 % higher in R4 than in R2, indicating the former yielded the highest metal recovery as settling precipitates (24.8 g FSS.L-1, 25 % Fe2+, 5% Cu2+). 16S rRNA sequencing showed highest diversity of sulfate-reducing bacteria in R2. A predominance of sulfate-reducing and fermentative bacteria with more similarity was observed between microbial populations in R1 and R4, despite the difference in toxicity thresholds. Hence, the electron donor influenced not only the biological sulfate reduction, but also metal toxicity thresholds and metal recovery as settling precipitates.


Asunto(s)
Reactores Biológicos , Electrones , Metales , ARN Ribosómico 16S , Sulfatos
4.
J Environ Manage ; 275: 111216, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858270

RESUMEN

Lignocellulosic materials can be used as slow release electron donor (SRED) for biological sulfate reduction, potentially enhancing the subsequent metal sulfide precipitation. Lignocellulosic materials require a pre-treatment step in other biotechnological applications, but pre-treatment strategies for its use as a SRED for biological sulfate reduction have not yet been tested. Three pre-treatments strategies (mechanical, acid, and mechanical followed by acid pre-treatment) were tested to enhance electron donor release from brewery spent grain (BSG), and compared to a non-pre-treated control. Mechanical pre-treatment provided the highest sulfate removal rate (82.8 ± 8.8 mg SO42-.(g TVS.day)-1), as well as the highest final sulfide concentration (441.0 ± 34.4 mg.L-1) at mesophilic conditions. BSG submitted to mechanical pre-treatment was also assessed under psychrophilic and thermophilic conditions. Under mesophilic and psychrophilic conditions, both sulfate reduction and methane production occurred. Under psychrophilic conditions, the sulfate reduction rate was lower (25 ± 2.0 mg SO42-.(g TVS.day)-1), and the sulfide formation depended on lactate addition. A metal precipitation assay was conducted to assess whether the use of SRED enhances metal recovery. Zinc precipitation and recovery with chemical or biogenic sulfide from the BSG batches were tested. Sulfide was provided in a single spike or slowly added, mimicking the effect of SRED. ZnS was formed in all conditions, but better settling particles were obtained when sulfide was slowly added, regardless of the sulfide source.


Asunto(s)
Reactores Biológicos , Electrones , Oxidación-Reducción , Sulfatos , Sulfuros , Temperatura
5.
Braz J Microbiol ; 51(4): 1909-1918, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32748245

RESUMEN

Filamentous fungi have been proved to have a pronounced capability to recover metals from mineral ores. However, the metal recovery yield is reduced due to toxic effects triggered by various heavy metals present in the ore. The current study highlights the fungal adaptations to the toxic effects of metals at higher pulp densities for the enhanced bio-recovery of aluminum from low-grade bauxite. In the previous studies, a drastic decrease in the aluminum dissolution was observed when the bauxite pulp density was increased from 1 to 10% (w/v) due to the high metal toxicity and low tolerance of Aspergillus niger and Penicillium simplicissium to heavy metals. These fungi were adapted in order to increase heavy metal tolerance of these fungal strains and also to get maximum Al dissolution. A novel approach was employed for the adaptation of fungal strains using a liquid growth medium containing 5% bauxite pulp density supplemented with molasses as an energy source. The mycelia of adapted strains were harvested and subsequently cultured in a low-cost oat-agar medium. Batch experiments were performed to compare the aluminum leaching efficiencies in the direct one-step and the direct two-step bioleaching processes. FE-SEM analysis revealed the direct destructive and corrosive action by the bauxite-tolerant strains due to the extension and penetration of the vegetative mycelium filaments into the bauxite matrix. XRD analysis of the bioleached bauxite samples showed a considerable decline in oxide minerals such as corundum and gibbsite. Results showed a high amount of total Al (≥ 98%) was successfully bioleached and solubilized from low-grade bauxite by the adapted fungal strains grown in the presence of 5% pulp density and molasses as a low-cost substrate. Graphical abstract.


Asunto(s)
Óxido de Aluminio/metabolismo , Aluminio/aislamiento & purificación , Aluminio/metabolismo , Aspergillus niger/metabolismo , Penicillium/metabolismo , Aspergillus niger/crecimiento & desarrollo , Medios de Cultivo/química , Melaza , Micelio/metabolismo , Penicillium/crecimiento & desarrollo
6.
J Basic Microbiol ; 54(7): 650-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24523248

RESUMEN

Acidithiobacillus ferrooxidans is commonly used in bioleaching operations to recover copper from sulfide ores. It is commonly accepted that A. ferrooxidans attaches to mineral surfaces by means of extracellular polymeric substances (EPS), however the role of type IV pili and tight adherence genes in this process is poorly understood. Genes related to the formation of type IV pili and tight adherence were identified in the genome of the bacterium, and in this work, we show that A. ferrooxidans actively expresses these genes, as demonstrated by quantitative real-time PCR analysis using cells incubated with chalcopyrite for 2 h. Significant differences in gene expression were observed between planktonic and adhered cells, with the level of expression being much greater in planktonic cells. These results might indicate that planktonic cells can actively adhere to the substrate. A bioinformatics analysis of interaction networks of the tight adherence and type IV pilus assembly genes revealed a strong relationship between conjugation systems (tra operon) and regulatory systems (PilR, PilS).


Asunto(s)
Acidithiobacillus/efectos de los fármacos , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Cobre/farmacología , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Biopelículas/crecimiento & desarrollo , Anotación de Secuencia Molecular , Operón , Plancton/efectos de los fármacos , Plancton/genética , Plancton/metabolismo , Mapeo de Interacción de Proteínas , Percepción de Quorum , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...